Multimedia Analytics

ICS 491

End of Course

Tue Dec 5	Multimedia Analytics	
Thu Dec 7	Course Overview	
Fri Dec 15		Final Project Infographic and Code

Multimedia Analytics

- Image processing
- Video processing
- Text processing
- Speech processing

Central Theme: How to Represent Data as Numbers?

If we can properly represent data as numbers, we have all the tools of math at our disposal to do whatever we want with the data

Image Processing

Images are a Matrix of Pixels

Images are a Matrix of Pixels

Images are a Matrix of Pixels

		165	187	209	58	7
	14	125	233	201	98	159
253	144	120	251	41	147	204
67	100	32	241	23	165	30
209	118	124	27	59	201	79
210	236	105	169	19	218	156
35	178	199	197	4	14	218
115	104	34	111	19	196	
32	69	231	203	74		

How do PhotoShop Effects Work?

Original Image

Kernel

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Filtered Image

Input image

https://setosa.io/ev/image-kernels/

The Convolutional Neural Network

Visualizing Feature Maps

Explainable AI for Images: Saliency Maps

(a) Husky classified as wolf

(b) Explanation

ן – ת	$\Delta probability$			
D - 1	$\Delta pixel$			

Brushing teeth

Cutting trees

- Consider each pixel value in turn: R, G, B, then the next pixel.
- Make a copy of the image array before you change anything!
- Make the pixel value larger or smaller by various amounts. Each time, find the CNN's prediction with the changed value, and calculate the value of D.
- Repeat the previous step a few times, and calculate the pixel's saliency: the average value of D.
- Store the saliency of each pixel in a list, so that we can visualize it later.

Beyond Classification

Object Detection

YOLO Algorithm for Object Detection

Divide image into a grid

Use a set of base boxes per grid

Within each grid cell:

- Regress from each of the B base boxes to a final box with 5 numbers: box coordinates and confidence scores
- Predict scores for each of C classes (including background as a class)
- Looks a lot like a Region Proposal Network, but category-specific

Segmentation

٦.

Person Bicycle Background

Knowledge Scene Graph Prediction

3D Object Detection

Pose Estimation

Object Tracking

Video Processing

Like Image Processing, But On a Per-Frame Basis

Text Processing

How to Represent Text as Numbers? Bag of Words

	about	bird	heard	is	the	word	you
About the bird, the bird, bird, bird bird bird	1	5	0	0	2	0	0
You heard about the <mark>bird</mark>	1	1	1	0	1	0	1
The <mark>bird</mark> is the word	0	1	0	1	2	1	0

How to Represent Text as Numbers? word2vec

Speech Processing

How to Represent Audio as Numbers? Waveforms are just 1D arrays!

2	8	7	6	0
---	---	---	---	---

Generating Synthetic Data (e.g., DeepFakes)

• GANS

• Diffusion Models

Generative Adversarial Network (GAN)

Generative Adversarial Network (GAN)

GAN Training Process

- Generator G produces noise
- Discriminator D learns to classify noise vs. real
- D tells G how to make noise look more real
- G starts generating real-looking images While True:
 - D gets confused, tries harder to distinguish real vs. fake images
 - G gets better at generating fake images
 - D gets better at identifying fake images

GAN Training Process

Multiple Interacting Neural Networks

This is the first time in this class where we build a single system with **multiple neural networks** which **interact with each other**

This is a recurring theme in many new areas of deep learning

GAN Loss Function $\min \max V(D,G)$ For Discriminator: Maximize to get D(G(z)) as close to 0 Maximize to get D(X) as close to 1 $V(D,G) = \mathbb{E}_{x \sim p_{data}(x)}[\log D(x)] + \mathbb{E}_{z \sim p_z(z)}[\log(1 - D(G(z)))]$ Discriminator output for Discriminator generated fake data output for real G(z): as close to 0 as data x: as close to 1 as possible possible

GAN Loss Function

For Generator (only cares about generated images):

GAN Training Process

Alternate between:

• Gradient ascent for Discriminator

$$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

• Gradient descent for Generator

$$\min_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$$

Diffusion Models

Applications of Generative Models

www.thispersondoesnotexist.com

Interpolating between random points in latent space

Latent Space Math

Latent Space Math

Samples from the model

Average Z vectors, do arithmetic

Obama Deepfake (2018)

Volodymyr Zelenskyy Deepfake (2022)

Text to Image

