都元 \square T \square T \square \square \square T

 \square

 \square

$P(A)=$ "probability of event A "
$P(A \mid B)=$ "probability of event A given event B "
$P(\bar{A})=$ "probability of event A not occurring"

Basic Rules:

* sum of all probabilities in on event space $=1$
* $0 \leq P(x) \leq 1$
* $P(\bar{A})=1-P(A)$
$P(A)=1-P(\bar{A})$
* $P(A$ or $B)=P(A) * P(B)$
iff A and B are mutually exclusive

$$
* P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B)
$$

$$
\begin{aligned}
& * P(A \text { and } B)=P(A) P(B \mid A)=P(B) P(A \mid B) \\
& * P(A \text { and } B)=P(A) P(B)
\end{aligned}
$$

iffy' A ord' B ' are independent

* Bayes" Rule:

$$
\begin{aligned}
& \text { ayes" Rule: } \\
& P(A \mid B)=\frac{P(A \text { and } B)}{P(B)}
\end{aligned}
$$

IIII = event A that is relevant given B
m : event A that is irrelevant given B

Email Spam Categorization Using Probability

Step 1
In Excel:

$$
\binom{\underline{1}=>p o m,}{0=\text { not som }}
$$

Step 2
Convert text into numerical representation:
1 if word appears in text
\mathcal{O} is word doesn't appear in text
(this table doesn't correspond to step 1's toble)

hells	Vicodin	$\ldots .0 .10$	spam?	
0	1			
1	1		1	
0	0			1
1	1			
1	1	0	0	0
0	0		1	
-0			1	

1	0	\cdots
1	0	
1	1	
1	1	
0		
0		
0		

Step 3
Calculate the relevant probabilities sur

$$
\begin{aligned}
& P(A \mid B)=\frac{P(A \text { and } B)}{P(B)}=\frac{P(B \mid A) P(A)}{P(B)}
\end{aligned}
$$

To categorize or seam, $P($ spam leach word $) \leqslant P\left(\begin{array}{c}\text { not } \\ \text { span }\end{array}\right.$ leach, word) $)$

$$
\begin{aligned}
& P(\text { "hello" } \mid \text { spam })=\frac{\text { number of Seam emails with "hello" }}{\text { number of Sem mails }}=50 \% \\
& P(\text { "Vicadin" } \mid \text { spot })=4 / 6=66.7 \% \\
& P(\text { spam })=6 \% 10=60 \% \\
& P\left(\text { "hero" } \begin{array}{c|c}
\text { not } \\
\text { sem }
\end{array}\right)=4 / 4=100 \% \\
& P(\text { "Violin" } \| \text { spot })=2 / 4=50 \% \\
& P(n o t s p o n)=40 \%
\end{aligned}
$$

Step 4
Use these probabilities to categorize new, unseen emails.

Example new email; "Hello; Buy my vicadin."

$$
\begin{aligned}
& P\left(\left.\begin{array}{c}
\text { not } \\
\text { span }
\end{array} \right\rvert\, \text { words }\right) ~ \propto P\left(\text { "helios" } \left\lvert\, \begin{array}{c}
\text { not } \\
\text { som }
\end{array}\right.\right) P\left(\text { "ricicaici" } \left\lvert\, \begin{array}{c}
\text { not } \\
\text { seam }
\end{array}\right.\right) P\binom{\text { not }}{\text { som }} \\
& =100 \% \cdot 50 \% \cdot 40 \%=80 \%
\end{aligned}
$$

since $P($ spam \mid words $)>P\left(\left.\begin{array}{l}\text { not } \\ \text { spam }\end{array} \right\rvert\,\right.$ words $)$,
put email in spam solder.
Example new email: "Hello! Let's go to lunch."

$$
\begin{aligned}
& P(\text { spam } \mid \text { words }) \propto P(\text { "hello" } \mid \text { spot }) P(\text { not "vicodin" } \mid \text { spam }) P(\text { spam }) \\
& =50 \% \cdot 33.3 \% \cdot 60 \% \\
& =10 \%
\end{aligned}
$$

$$
\begin{aligned}
& =100 \%, 50 \% \cdot 40 \% \\
& =20 \%
\end{aligned}
$$

Since $P($ not spam \mid words $)>P($ spam $)$ words $)$, don't put email in seam faker

$$
\begin{aligned}
P(75 \% & \text { grade }<85 \%) \\
& =\int_{75}^{85} \text { Bell Curve } d x
\end{aligned}
$$

