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Tried and True Classical ML Methods

• Linear and Logistic Regression
• Decision Trees
• Random Forests
• Support Vector Machines
• Naïve Bayes

When to use:
• Small dataset
• Simple features (e.g., 100 columns in an Excel table rather than high 

resolution images or video)



Tried and True DL Methods

To Be Determined!

Better methods are coming out every year (and more frequently than that!)

Therefore, for the remainder of this class:
• Focus on big ideas rather than the details of any specific method
• See HW5 Question 1 for examples of the level of detail to take away (for 

the exam and in general)
• Therefore, we will be switching to slides rather than iPad writing (unless 

there is high student demand to switch back)



A lot of these methods are developed by 
creative graduate students 

Take an existing method and tweak it slightly based on intuition 
(mathematical, creative, or otherwise)

What’s to say that your ideas for alternative approaches wouldn’t work 
or be better as well?



Review of Concepts to Know from 
Coding Lectures



Visualizing Feature Maps



Regularization for Neural Nets: Dropout
Dropout nodes with probability p (hyperparameter) 

during each step of training. Helps prevent overfitting.



Saliency Maps



Hyperparameter Optimization



How to implement…

• A specified neural network architecture

• Training and evaluating a neural network

• Transfer learning



Important NN Decisions (besides the  architecture)

(1) Learning rate
(2) Optimizer (which fancy variation 

of Gradient Descent to use)
(3) Loss function

(4) How many epochs to train for

(5) When to stop training (can be 
specified in a callback function)

(e.g., for Homework 5)



Semantic Segmentation



Goal of Semantic Segmentation



Recall: Convolutional Autoencoders



Recall: Convolutional Autoencoders



Semantic Segmentation: 
Convolutional Autoencoders



Upsampling in a CNN



CNN Upsampling Visualization

https://github.com/vdumoulin/conv_arithmetic

https://github.com/vdumoulin/conv_arithmetic


Popular Segmentation Architecture: U-Net



Segmentation Loss Function: Dice Coefficient



U-Net TensorFlow Code (from Segmentation notebook)

This is an example of how to go 
about implementing more complex 
NN architectures in TensorFlow! 



Learning Rate Annealing

Why would we want to do this? Make sure you know.



CNN Architectures



Prototypical CNN



AlexNet (2012)



GoogLeNet (2014)



New Layers
Long-term Recurrent Convolutional (LRCN) layer
• Will make more sense after next lecture

Inception layer
• allows the internal layers to pick and choose which filter size will be 

relevant to learn the required information



VGGNet (2014)



ResNet (2016-17)



Data Augmentation



What is the issue if we train a parrot classifier 
using pictures of parrots taken at 1pm each day in 

the same location?



Data Augmentation: create many versions of 
the same image using data preprocessing



Common Augmentation in Computer Vision



Effect of Data Augmentation



Image Data Augmentation in TensorFlow



Image Data Augmentation in PyTorch



Deep Learning Implementation



Two Main Frameworks: 
TensorFlow and PyTorch



Two Main Frameworks: 
TensorFlow and PyTorch

TensorFlow
• Developed by Google
• Most popular DL framework in industry
• (Tiny sample of) examples of users: Google, Airbnb, Coca Cola, GE Healthcare, Intel, Lenovo, Paypal, Qualcomm, Spotify, 

Texas Instruments, Twitter, Uber, JPMorgan Chase, Capital One, SeatGeek, WeightWatchers, Credit Karma, Grammarly, 
Dropbox, Upwork, Boeing, Liberty Mutual Insurance, Codeacademy, Box, McDonald’s, Merck, McKinsey, Unity, DE Shaw, 
Tempus, Nike, DoorDash, Etsy, …

PyTorch
• Developed by Meta
• Most popular DL framework in research
• (Tiny sample of) examples of users: Meta (Facebook, Instagram), academic research labs, OpenAI, Microsoft, Toyota, 

Tesla, Lyft, Walmart, NVIDIA, Wells Fargo, Airbnb, Genentech, … 

In practice, you can know either in terms of getting jobs (job requirements like “Development experience in deep learning 
frameworks such as PyTorch or TensorFlow”)



Two Main Frameworks: 
TensorFlow and PyTorch

TensorFlow
• Developed by Google
• Most popular DL framework in industry
• (Tiny sample of) examples of users: Google, Airbnb, Coca Cola, GE Healthcare, Intel, Lenovo, Paypal, Qualcomm, Spotify, 

Texas Instruments, Twitter, Uber, JPMorgan Chase, Capital One, SeatGeek, WeightWatchers, Credit Karma, Grammarly, 
Dropbox, Upwork, Boeing, Liberty Mutual Insurance, Codeacademy, Box, McDonald’s, Merck, McKinsey, Unity, DE Shaw, 
Tempus, Nike, DoorDash, Etsy, …

PyTorch
• Developed by Meta
• Most popular DL framework in research
• (Tiny sample of) examples of users: Meta (Facebook, Instagram), academic research labs, OpenAI, Microsoft, Toyota, 

Tesla, Lyft, Walmart, NVIDIA, Wells Fargo, Airbnb, Genentech, … 

In practice, you can know either in terms of getting jobs (job requirements like “Development experience in deep learning 
frameworks such as PyTorch or TensorFlow”)

Will use TensorFlow for this class, but PyTorch is 
easy to learn if you already know deep learning 
fundamentals and TensorFlow.



Object Detection



Goal of Object Detection



Idea #1: Brute Force

• Apply many crops of the image
• Run a CNN through each crop



Idea #1: Brute Force

• Apply many crops of the image
• Run a CNN through each crop

Issues:

• Need to apply CNN to huge number of 
locations, scales, and aspect ratios

• Very computationally expensive!



Idea #2: R-CNN (2014)

• Same as idea #1, except identify a small number of region proposals 
using a “selective search” algorithm (many possible algorithms)



Selective Search in R-CNNs

• Goal:
• Capture all scales
• Fast to compute
• Diversification

• No need to memorize this algorithm; just know that 
there are many unsupervised ways of producing 
regions from an image. This is just one of them.



R-CNN continued

• Convolutional layers are 
used as a feature extractor
• An SVM is used to perform 

the final classification



R-CNN continued

• Convolutional layers are 
used as a feature extractor
• An SVM is used to perform 

the final classification

Issues:

• Very slow: need to do ~2000 independent 
forward passes for each image

• Takes about 47 seconds to run per image
• Selective Search is a fixed algorithm: no 

learning is involved. Can we do better?



Idea #3: Fast R-CNN (2015)
• Use a fixed region proposal method like in R-CNN, but…
• Feed whole image through a single CNN to make predictions per 

proposal, minimizing time from running separate CNN per region 



Region of Interest (RoI) Pooling Layers



RoI Pooling

• Fixes issue of CNNs requiring a fixed input dimension



Idea #4: Faster R-CNN (2015)

• Same as Fast R-CNN, except a CNN does the ROI proposals
• This CNN is called a “Region Proposal Network”
• Notice a trend: increasingly use ML 



Region Proposal Network

• Contains a classifier and a regressor
• Center of anchor boxes is center of 

sliding window
• Classifier determines the probability 

of a proposal having the target object
• Regressor regresses the coordinates 

of the proposals
• Details beyond scope of this class



Comparison of Detection Speeds (seconds)



Idea #5: You Only Look Once (YOLO) 
(2015-2023)

Divide image into a grid
Use a set of base boxes per grid
Within each grid cell:
• Regress from each of the B base boxes to a final box with 5 numbers: box 

coordinates and confidence scores
• Predict scores for each of C classes (including background as a class)
• Looks a lot like a Region Proposal Network, but category-specific



Modifications to YOLO Over Time



Related Deep Computer Vision Tasks



Knowledge Scene Graph Prediction



3D Object Detection



Pose Estimation



Object Tracking



Variational Autoencoders (VAEs)
(first proposed 2013,

good examples starting around 2017)



Variational Autoencoder (VAE)
Key idea: sample from the “latent space” generate data.



Variational Autoencoder (VAE)
Key idea: sample from the “latent space” generate data.



VAE Loss Function



VAE Loss Function

Reconstruction Error term:
Same as a regular autoencoder



VAE Loss Function

Reconstruction Error term:
Same as a regular autoencoder

“What is the distance between x and the 
resulting of running the decoder through 

the latent space z?” 



VAE Loss Function

Reconstruction Error term:
Same as a regular autoencoder

KL Divergence term:
If latent space distribution differs from a 
standard normal distribution, impose a 
penalty (otherwise, may learn to make 
variance 0, thus functioning as a plain 

autoencoder)

“What is the distance between x and the 
resulting of running the decoder through 

the latent space z?” 



VAE Loss Function

Reconstruction Error term:
Same as a regular autoencoder

KL Divergence term:
If latent space distribution differs from a 
standard normal distribution, impose a 
penalty (otherwise, may learn to make 
variance 0, thus functioning as a plain 

autoencoder)

(KL Divergence is a popular distance metric between probability distributions)

“What is the distance between x and the 
resulting of running the decoder through 

the latent space z?” 



VAE Loss Function

In practice, use a hyperparameter to control how much to weight one term vs another (similar to λ in L1/L2 regularization).

λ

In practice, this hyperparameter is made larger with each consecutive 
epoch (“KL Annealing”).

This prevents just optimizing the KL term at first without learning a useful 
representation, which happens in practice.



Applications of VAEs:
Examples of Sampling from the Latent Space
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Kuznetsov, V. V., V. A. Moskalenko, and N. Yu Zolotykh. "Electrocardiogram generation and feature 
extraction using a variational autoencoder." arXiv preprint arXiv:2002.00254 (2020).



Generative Adversarial Networks (GANs)
(first proposed 2014,

good examples starting around 2017)



Generative Adversarial Network (GAN)



Generative Adversarial Network (GAN)



GAN Training Process

• Generator G produces noise
• Discriminator D learns to classify noise vs. real
• D tells G how to make noise look more real
• G starts generating real-looking images
While True:

• D gets confused, tries harder to distinguish real 
vs. fake images

• G gets better at generating fake images

• D gets better at identifying fake images



GAN Training Process



Multiple Interacting Neural Networks

This is the first time in this class where we build a single system with 
multiple neural networks which interact with each other

This is a recurring theme in many new areas of deep learning



GAN Loss Function

Minimize loss for Generator; Maximize loss for Discriminator

Discriminator 
output for 
real data x

Discriminator output 
for generated fake 

data G(z)



GAN Loss Function
For Discriminator:

Discriminator 
output for real 
data x: as close 
to 1 as possible

Discriminator output for 
generated fake data 
G(z): as close to 0 as 

possible

Maximize to get D(X) as close to 1 Maximize to get D(G(z)) as close to 0



GAN Loss Function
For Generator (only cares about generated images):

Discriminator output for 
generated fake data 
G(z): as close to 1 as 

possible

Minimize to get D(G(z)) as close to 1



GAN Training Process

Alternate between:

• Gradient ascent for Discriminator

• Gradient descent for Generator



Practical Consideration #1

In practice, gradient ascent to maximize likelihood of discriminator 
being wrong has a higher gradient signal than minimizing likelihood of 
discriminator being correct when the sample is likely fake, so this works 
better and is therefore what tends to be implemented



There are several other practical things to 
figure out to successfully train a GAN

• The model parameters oscillate, destabilize and never converge
• The generator produces limited varieties of samples
• Gradients “vanish” and learn nothing
• Overfitting
• Highly sensitive to the hyperparameter selection
• … (the list goes on) …



But if you eventually get it right, the applications 
can be (and have been) very powerful…



Applications of Generative Models



www.thispersondoesnotexist.com

http://www.thispersondoesnotexist.com/


Interpolating between random points in 
latent space



Latent Space Math



Latent Space Math





Other Applications of Generative Models

• Deep fakes
• Photograph editing
• Inspiration for music, art, designs, …
• Example generation
• Converting one modality to another (e.g., image to text)
• Data augmentation
• For general performance increase
• For creating fairer models

• …



Obama Deepfake (2018)



Volodymyr Zelenskyy Deepfake (2022)


