
Deep Computer Vision
ICS/DATA 435 and ICS 635

Spring 2023

Tried and True Classical ML Methods

• Linear and Logistic Regression
• Decision Trees
• Random Forests
• Support Vector Machines
• Naïve Bayes

When to use:
• Small dataset
• Simple features (e.g., 100 columns in an Excel table rather than high

resolution images or video)

Tried and True DL Methods

To Be Determined!

Better methods are coming out every year (and more frequently than that!)

Therefore, for the remainder of this class:
• Focus on big ideas rather than the details of any specific method
• See HW5 Question 1 for examples of the level of detail to take away (for

the exam and in general)
• Therefore, we will be switching to slides rather than iPad writing (unless

there is high student demand to switch back)

A lot of these methods are developed by
creative graduate students

Take an existing method and tweak it slightly based on intuition
(mathematical, creative, or otherwise)

What’s to say that your ideas for alternative approaches wouldn’t work
or be better as well?

Review of Concepts to Know from
Coding Lectures

Visualizing Feature Maps

Regularization for Neural Nets: Dropout
Dropout nodes with probability p (hyperparameter)

during each step of training. Helps prevent overfitting.

Saliency Maps

Hyperparameter Optimization

How to implement…

• A specified neural network architecture

• Training and evaluating a neural network

• Transfer learning

Important NN Decisions (besides the architecture)

(1) Learning rate
(2) Optimizer (which fancy variation

of Gradient Descent to use)
(3) Loss function

(4) How many epochs to train for

(5) When to stop training (can be
specified in a callback function)

(e.g., for Homework 5)

Semantic Segmentation

Goal of Semantic Segmentation

Recall: Convolutional Autoencoders

Recall: Convolutional Autoencoders

Semantic Segmentation:
Convolutional Autoencoders

Upsampling in a CNN

CNN Upsampling Visualization

https://github.com/vdumoulin/conv_arithmetic

https://github.com/vdumoulin/conv_arithmetic

Popular Segmentation Architecture: U-Net

Segmentation Loss Function: Dice Coefficient

U-Net TensorFlow Code (from Segmentation notebook)

This is an example of how to go
about implementing more complex
NN architectures in TensorFlow!

Learning Rate Annealing

Why would we want to do this? Make sure you know.

CNN Architectures

Prototypical CNN

AlexNet (2012)

GoogLeNet (2014)

New Layers
Long-term Recurrent Convolutional (LRCN) layer
• Will make more sense after next lecture

Inception layer
• allows the internal layers to pick and choose which filter size will be

relevant to learn the required information

VGGNet (2014)

ResNet (2016-17)

Data Augmentation

What is the issue if we train a parrot classifier
using pictures of parrots taken at 1pm each day in

the same location?

Data Augmentation: create many versions of
the same image using data preprocessing

Common Augmentation in Computer Vision

Effect of Data Augmentation

Image Data Augmentation in TensorFlow

Image Data Augmentation in PyTorch

Deep Learning Implementation

Two Main Frameworks:
TensorFlow and PyTorch

Two Main Frameworks:
TensorFlow and PyTorch

TensorFlow
• Developed by Google
• Most popular DL framework in industry
• (Tiny sample of) examples of users: Google, Airbnb, Coca Cola, GE Healthcare, Intel, Lenovo, Paypal, Qualcomm, Spotify,

Texas Instruments, Twitter, Uber, JPMorgan Chase, Capital One, SeatGeek, WeightWatchers, Credit Karma, Grammarly,
Dropbox, Upwork, Boeing, Liberty Mutual Insurance, Codeacademy, Box, McDonald’s, Merck, McKinsey, Unity, DE Shaw,
Tempus, Nike, DoorDash, Etsy, …

PyTorch
• Developed by Meta
• Most popular DL framework in research
• (Tiny sample of) examples of users: Meta (Facebook, Instagram), academic research labs, OpenAI, Microsoft, Toyota,

Tesla, Lyft, Walmart, NVIDIA, Wells Fargo, Airbnb, Genentech, …

In practice, you can know either in terms of getting jobs (job requirements like “Development experience in deep learning
frameworks such as PyTorch or TensorFlow”)

Two Main Frameworks:
TensorFlow and PyTorch

TensorFlow
• Developed by Google
• Most popular DL framework in industry
• (Tiny sample of) examples of users: Google, Airbnb, Coca Cola, GE Healthcare, Intel, Lenovo, Paypal, Qualcomm, Spotify,

Texas Instruments, Twitter, Uber, JPMorgan Chase, Capital One, SeatGeek, WeightWatchers, Credit Karma, Grammarly,
Dropbox, Upwork, Boeing, Liberty Mutual Insurance, Codeacademy, Box, McDonald’s, Merck, McKinsey, Unity, DE Shaw,
Tempus, Nike, DoorDash, Etsy, …

PyTorch
• Developed by Meta
• Most popular DL framework in research
• (Tiny sample of) examples of users: Meta (Facebook, Instagram), academic research labs, OpenAI, Microsoft, Toyota,

Tesla, Lyft, Walmart, NVIDIA, Wells Fargo, Airbnb, Genentech, …

In practice, you can know either in terms of getting jobs (job requirements like “Development experience in deep learning
frameworks such as PyTorch or TensorFlow”)

Will use TensorFlow for this class, but PyTorch is
easy to learn if you already know deep learning
fundamentals and TensorFlow.

Object Detection

Goal of Object Detection

Idea #1: Brute Force

• Apply many crops of the image
• Run a CNN through each crop

Idea #1: Brute Force

• Apply many crops of the image
• Run a CNN through each crop

Issues:

• Need to apply CNN to huge number of
locations, scales, and aspect ratios

• Very computationally expensive!

Idea #2: R-CNN (2014)

• Same as idea #1, except identify a small number of region proposals
using a “selective search” algorithm (many possible algorithms)

Selective Search in R-CNNs

• Goal:
• Capture all scales
• Fast to compute
• Diversification

• No need to memorize this algorithm; just know that
there are many unsupervised ways of producing
regions from an image. This is just one of them.

R-CNN continued

• Convolutional layers are
used as a feature extractor
• An SVM is used to perform

the final classification

R-CNN continued

• Convolutional layers are
used as a feature extractor
• An SVM is used to perform

the final classification

Issues:

• Very slow: need to do ~2000 independent
forward passes for each image

• Takes about 47 seconds to run per image
• Selective Search is a fixed algorithm: no

learning is involved. Can we do better?

Idea #3: Fast R-CNN (2015)
• Use a fixed region proposal method like in R-CNN, but…
• Feed whole image through a single CNN to make predictions per

proposal, minimizing time from running separate CNN per region

Region of Interest (RoI) Pooling Layers

RoI Pooling

• Fixes issue of CNNs requiring a fixed input dimension

Idea #4: Faster R-CNN (2015)

• Same as Fast R-CNN, except a CNN does the ROI proposals
• This CNN is called a “Region Proposal Network”
• Notice a trend: increasingly use ML

Region Proposal Network

• Contains a classifier and a regressor
• Center of anchor boxes is center of

sliding window
• Classifier determines the probability

of a proposal having the target object
• Regressor regresses the coordinates

of the proposals
• Details beyond scope of this class

Comparison of Detection Speeds (seconds)

Idea #5: You Only Look Once (YOLO)
(2015-2023)

Divide image into a grid
Use a set of base boxes per grid
Within each grid cell:
• Regress from each of the B base boxes to a final box with 5 numbers: box

coordinates and confidence scores
• Predict scores for each of C classes (including background as a class)
• Looks a lot like a Region Proposal Network, but category-specific

Modifications to YOLO Over Time

Related Deep Computer Vision Tasks

Knowledge Scene Graph Prediction

3D Object Detection

Pose Estimation

Object Tracking

Variational Autoencoders (VAEs)
(first proposed 2013,

good examples starting around 2017)

Variational Autoencoder (VAE)
Key idea: sample from the “latent space” generate data.

Variational Autoencoder (VAE)
Key idea: sample from the “latent space” generate data.

VAE Loss Function

VAE Loss Function

Reconstruction Error term:
Same as a regular autoencoder

VAE Loss Function

Reconstruction Error term:
Same as a regular autoencoder

“What is the distance between x and the
resulting of running the decoder through

the latent space z?”

VAE Loss Function

Reconstruction Error term:
Same as a regular autoencoder

KL Divergence term:
If latent space distribution differs from a
standard normal distribution, impose a
penalty (otherwise, may learn to make
variance 0, thus functioning as a plain

autoencoder)

“What is the distance between x and the
resulting of running the decoder through

the latent space z?”

VAE Loss Function

Reconstruction Error term:
Same as a regular autoencoder

KL Divergence term:
If latent space distribution differs from a
standard normal distribution, impose a
penalty (otherwise, may learn to make
variance 0, thus functioning as a plain

autoencoder)

(KL Divergence is a popular distance metric between probability distributions)

“What is the distance between x and the
resulting of running the decoder through

the latent space z?”

VAE Loss Function

In practice, use a hyperparameter to control how much to weight one term vs another (similar to λ in L1/L2 regularization).

λ

In practice, this hyperparameter is made larger with each consecutive
epoch (“KL Annealing”).

This prevents just optimizing the KL term at first without learning a useful
representation, which happens in practice.

Applications of VAEs:
Examples of Sampling from the Latent Space

Zhang, Zhifei, Yang Song, and Hairong Qi. "Age progression/regression by conditional adversarial
autoencoder." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.

Ranjan, Anurag, et al. "Generating 3D faces using convolutional mesh autoencoders." Proceedings of
the European conference on computer vision (ECCV). 2018.

Zhou, Yuqian, and Bertram Emil Shi. "Photorealistic facial expression synthesis by the conditional
difference adversarial autoencoder." 2017 seventh international conference on affective computing and
intelligent interaction (ACII). IEEE, 2017.

Semeniuta, Stanislau, Aliaksei Severyn, and Erhardt Barth. "A hybrid convolutional
variational autoencoder for text generation." arXiv preprint arXiv:1702.02390 (2017).

Jin, Wengong, Regina Barzilay, and Tommi Jaakkola. "Junction tree variational autoencoder for
molecular graph generation." International conference on machine learning. PMLR, 2018.

Kuznetsov, V. V., V. A. Moskalenko, and N. Yu Zolotykh. "Electrocardiogram generation and feature
extraction using a variational autoencoder." arXiv preprint arXiv:2002.00254 (2020).

Generative Adversarial Networks (GANs)
(first proposed 2014,

good examples starting around 2017)

Generative Adversarial Network (GAN)

Generative Adversarial Network (GAN)

GAN Training Process

• Generator G produces noise
• Discriminator D learns to classify noise vs. real
• D tells G how to make noise look more real
• G starts generating real-looking images
While True:

• D gets confused, tries harder to distinguish real
vs. fake images

• G gets better at generating fake images

• D gets better at identifying fake images

GAN Training Process

Multiple Interacting Neural Networks

This is the first time in this class where we build a single system with
multiple neural networks which interact with each other

This is a recurring theme in many new areas of deep learning

GAN Loss Function

Minimize loss for Generator; Maximize loss for Discriminator

Discriminator
output for
real data x

Discriminator output
for generated fake

data G(z)

GAN Loss Function
For Discriminator:

Discriminator
output for real
data x: as close
to 1 as possible

Discriminator output for
generated fake data
G(z): as close to 0 as

possible

Maximize to get D(X) as close to 1 Maximize to get D(G(z)) as close to 0

GAN Loss Function
For Generator (only cares about generated images):

Discriminator output for
generated fake data
G(z): as close to 1 as

possible

Minimize to get D(G(z)) as close to 1

GAN Training Process

Alternate between:

• Gradient ascent for Discriminator

• Gradient descent for Generator

Practical Consideration #1

In practice, gradient ascent to maximize likelihood of discriminator
being wrong has a higher gradient signal than minimizing likelihood of
discriminator being correct when the sample is likely fake, so this works
better and is therefore what tends to be implemented

There are several other practical things to
figure out to successfully train a GAN

• The model parameters oscillate, destabilize and never converge
• The generator produces limited varieties of samples
• Gradients “vanish” and learn nothing
• Overfitting
• Highly sensitive to the hyperparameter selection
• … (the list goes on) …

But if you eventually get it right, the applications
can be (and have been) very powerful…

Applications of Generative Models

www.thispersondoesnotexist.com

http://www.thispersondoesnotexist.com/

Interpolating between random points in
latent space

Latent Space Math

Latent Space Math

Other Applications of Generative Models

• Deep fakes
• Photograph editing
• Inspiration for music, art, designs, …
• Example generation
• Converting one modality to another (e.g., image to text)
• Data augmentation
• For general performance increase
• For creating fairer models

• …

Obama Deepfake (2018)

Volodymyr Zelenskyy Deepfake (2022)

