Deep Computer Vision

ICS/DATA 435 and ICS 635
Spring 2023

Tried and True Classical ML Methods

 Linear and Logistic Regression
* Decision Trees

 Random Forests

e Support Vector Machines

* Naive Bayes

When to use:
 Small dataset

e Simple features (e.g., 100 columns in an Excel table rather than high
resolution images or video)

Tried and True DL Methods

To Be Determined!

Better methods are coming out every year (and more frequently than that!)

Therefore, for the remainder of this class:
* Focus on big ideas rather than the details of any specific method

e See HW5 Question 1 for examples of the level of detail to take away (for
the exam and in general)

* Therefore, we will be switching to slides rather than iPad writing (unless
there is high student demand to switch back)

A lot of these methods are developed by
creative graduate students

Take an existing method and tweak it slightly based on intuition
(mathematical, creative, or otherwise)

What'’s to say that your ideas for alternative approaches wouldn’t work
or be better as well?

Review of Concepts to Know from
Coding Lectures

Visualizing Feature Maps

Elephants

: ‘;;.‘"‘
=8 sl

o 1T % ok
h. a s -~eh.1 '1' an \\1 -.f\ v

HANEE AN WESNM)SEAN
. ol \"' ':’.— Y \4-" '“’:\\
. 'j ‘—1

PR

ASN N ASN N Y ANy ASN N Y
NZR¥N = h] LN : NZR7 L =
A 04NN A LA NN {EANN A 04NN

Regularization for Neural Nets: Dropout

Dropout nodes with probability p (hyperparameter)
during each step of training. Helps prevent overfitting.

)

AV
XK

*
Cr—CxKe
"

)

\s L)
i
Y

X X/

(b) After applying dropout.

(a) Standard Neural Net

Saliency Maps

Brushing teeth Cutting trees

(n) Husky classified as wolf (b) Explanation

__ | Aprobability
D=| Apixel |

Consider each pixel value in turn: R, G, B, then the next pixel.

Make a copy of the image array before you change anything!

Make the pixel value larger or smaller by various amounts. Each time, find the CNN's prediction with the changed value, and calculate the
value of D.

Repeat the previous step a few times, and calculate the pixel's saliency: the average value of D.

Store the saliency of each pixel in a list, so that we can visualize it later.

Hyperparameter Optimization

Random Search

Grid Search

How to implement...

* A specified neural network architecture
* Training and evaluating a neural network

* Transfer learning

Important NN Decisions (besides the architecture)

(e.g., for Homework 5)

def train(model, x, y, x val, y val, lr, epochs):

log dir = "logs/" + model.name + "/" + datetime.datetime.now().strftime("%Y¥m%d-3HEMES")
tensorboard callback = tf.keras.callbacks.TensorBoard(log dir=log dir, histogram freqg=1)
print ("MODEL NAME:", model.name) (1) Learning rate

optimizer = tf.optimizers.Adam(learning rate=lr) (2) Optimizer (which fancy variation
model.compile(
optimizer=optimizer,
loss=tf.keras.losses.BinaryCrossentropy(),

of Gradient Descent to use)
(3) Loss function

metrics=["accuracy"],

)

return model.fit(
Xy

Yo
epochs=epochs, (4) HOw many epochs to train for

validation data=(x_val, y val),
callbacks=[tensorboard_callback],(5) When to stop training (can be

verbose=1, specified in a callback function)

Semantic Segmentation

Goal of Semantic Segmentation

Person
Bicycle
Background

Recall: Convolutional Autoencoders

28x28x1

14x14x32 14x14x32

1152 1152
"-. ’_‘I‘<
Tx7x64 10 ' 7x7x64
—"

3x3x128 \q 3x3x128
: i [ib E 1}»‘:}
Conv3 * Reshape
Conv2 stride=2 h | DeConv3 /
stride=2 o« ' stride=2
Flatten FC -

Conv1l DeConv2
stride =2 stride=2

L

Recall: Convolutional Autoencoders

Input image Reconstructed image

Latent Space o
L Representation g

N — . — .

Encoder Bottleneck Decoder

RGB Image

Semantic Segmentation:
Convolutional Autoencoders

Convolutional Encoder-Decoder

Pooling Indices
B Conv + Batch Normalisation + RelU
B Pooling I Upsampling Softmax

Output

Segmentation

Upsampling in a CNN

Nearest
Neighbor

4x4 input
2x2 output 2x2 input
Bed of
Nails

Max

oolin Further
P g Network

Processing

iy

Memory of
Max locations

Max
Unpooling

CNN Upsampling Visualization

https://github.com/vdumoulin/conv_arithmetic

https://github.com/vdumoulin/conv_arithmetic

Popular Segmentation Architecture: U-Net

>
—> Input
3 Output
—> Max pooling 2*2
:; Up-conv 2*2
—>» Conv3*3
—
—
—

Conv 1*1
Copy and crop

Segmentation Loss Function: Dice Coefficient

2x . s‘
.+. 2% |T NP
| T'| + |P]

U-Net TensorFlow Code (from Segmentation notebook)

def section(convl filters, conv2 filters): #Represents one horizontal "section" of the U
return tf.keras.Sequential (
[
Conv2D(convl_filters, 3, padding="same", activation="relu"),
Conv2D(conv2_filters, 3, padding="same", activation="relu"),

class U _Net(tf.keras.Model):
def init_(self):
super (U _Net, self). init () #What do the numbers represent?
self.sectionl = section(1l6, 16)
self.section2 = section(32, 32)

self.section3 = section(32, 64) #Bottom of the U! This is an example of how to g0
golhugect ot —cEect onl gy 2e) about implementing more complex
self.section5 = section(1l6, 16) . .

self.final conv = Conv2D(1l, 3, padding="same", activation="sigmoid") NN architectures in TensorFlow!

self.maxpooll, self.maxpool2 = MaxPool2D(2), MaxPool2D(2) #Why are there two of these?
self.upsamplel, self.upsample2 = UpSampling2D(2), UpSampling2D(2)

def call(self, inputs):

inputl self.sectionl (inputs)

input2 = self.section2(self.maxpooll(inputl))

input3 = self.section3(self.maxpool2(input2))

input4 = self.section4(concatenate([input2, self.upsamplel(input3)]))
input5 = self.section5(concatenate([inputl, self.upsample2(input4)]))
output = self.final conv(input5)

return output

[] unet = U Net()

0.010 1

0.008 -

learning rate

0.002 1

0.000

Learning Rate Annealing

0.006

0004

Stepwise Annealing Cosine Annealing
0.010 -1
0.008 -
Vv
® 0006 1
o
c
c
s 0004 1
v
0.002 -1
0.000 -
200 400 600 800 1000 0 200 400 600 800 1000
iterations iterations

Why would we want to do this? Make sure you know.

CNN Architectures

Input Layer

Convolutional
Layer

Prototypical CNN

Pooling
Layer

Fully Connected

Layers

= =

£ . (L)autput

. . yer
a

= 1% -

sEEEn —_—

i = @

] I

= =

3x3 pad=1
384

(13+2°-30
1 =13

13

19

AlexNet (2012)

Overlapping
Max POOL CONV
3, 5x5 pad=2
striten? 256 kernels
(.sg-':m ot o ?;27%"
Overapping
CONV Max POOL
33 pad=1 33, 258
256 kernels stnde=2
(13+2°1.3)1 (133)2 »)
1 =13 =8

13 6

9216

g |00 -

CONV

33 pad=1
384 kemels

- —.

(13427730
! =13

GooglLeNet (2014)

New Layers

Long-term Recurrent Convolutional (LRCN) layer

 Will make more sense after next lecture

Inception layer

* allows the internal layers to pick and choose which filter size will be

relevant to learn the required information

—

1x1 convolutions

N

Filter
concatenation
3x3 convolutions 5x5 convolutions 1x1 convolutions
4 } $
1x1 convolutions 1x1 convolutions 3x3 max pooling
— = \ L

Previous layer

VGGNet (2014)

convl

conv2

convi

conv4 ;
e fc6 fe7 fc8

—— 3 =3 o= 3

1 x1x409 1x1x1000

14 x 14 x 512

28 x 28 x 512
56 x 56 x 256

TxT7x5]12

-
Y > 112 % 128
@ convolution+ ReLU

f=f) max pooling
¢ fully connected+ReLU

I“l

224 x 224 x 64

2016-17)

ResNet (

Plain

P p— pe— G e e e e (R e e e R SRR S R e e S S SR e G g e S e e SR (e g e

0001 %

A
jood Sae
A

Z1S ‘AUOD EXE

4

T1S ‘AU0D EXE

L

ZTS ‘AU0D £XE

4

Z1S ‘AU0d EXE

4

T1S ‘AU £xg

A

T/ ‘TS ‘Muod gXg

4

9ST ‘AUOD EXE

A

9SZ “AU0d EXE

A

9ST ‘AUOd £XE

4

9ST AUOd £XE

A

9ST ‘AU EXE

A

95T ‘MU0 EXE

4

95T "AUOD £XE

A

9ST ‘MO EXE

4

9ST ‘AUOS EXE

A

9SZ ‘MU0 EXE

4

95T ‘Au0d EXE

4

7/ "9ST ‘M03 EXE

Ly

§TT ‘AUOO EXE

4

82T ‘AUOD £XE

4

8ZT ‘AUOD EXE

A

BZT "AUOS EXE

A

BZT ‘AuOd EXE

A

BZT ‘AUOD EXE

4

8ZT ‘AUOD £XE

4

T/ ‘8T1 "‘A03 EXE

4

9 ‘AUOD EXE

A

9 ‘AUOD EXE

A

9 ‘MU0 EXE

A

9 ‘AUOD EXE

4

9 ‘AUOD £XE

Z/ "lood
4

2/ 'v9 'avod ext |

A

afew)

uie|d JaAe|-pg

aew|

|enpisal JaAe|-pE

Data Augmentation

What is the issue if we train a parrot classifier
using pictures of parrots taken at 1pm each day in
the same location?

Data Augmentation: create many versions of
the same image using data preprocessing

Common Augmentation in Computer Vision

Horizontal Vertically +45 Rotation -45 Rotation Blur

L e
' : ‘_‘ -

Noise added Darker Grayscale Crop

Original Image

Brighter

Augmented Images

Test Dice Loss

e
W
(=

0.25 1

0.20 1

0.15

Effect of Data Augmentation

== Augmenled Training
=& No Augmented Training

50

100 150 200 250 300
Number of Training Examples

Test Accuracy

0.95

e
©
=]

e
-
o

o
®
S

=
~
W

0.70 4

7N

— A —— —
¢ — e ———
.

=& Augmented Training
=& No Augmented Training

50

100 150 200 250 300
Number of Training Examples

Image Data Augmentation in TensorFlow

tf.keras.preprocessing.image.ImageDataGenerator(

featurewise_center=False,
samplewise_center=False,

featurewise_std_normalization=False,
samplewise_std_normalization=False,

zca_whitening=False,
zca_epsilon=1e-06,
rotation_range=0,
width_shift_range=0.0,
height_shift_range=6.8,
brightness_range=None,
shear_range=0.0,
zoom_range=0.0,
channel_shift_range=0.0,
fill_mode='nearest',
cval=0.0,
horizontal_flip=False,
vertical_flip=False,
rescale=None,
preprocessing_function=None,
data_format=None,
validation_split=0.0,
interpolation_order=1,
dtype=None

(x_train, y_train), (x_test, y_test) = cifar1@.load_data()
y_train = utils.to_categorical(y_train, num_classes)
y_test = utils.to_categorical(y_test, num_classes)
datagen = ImageDataGenerator(
featurewise_center=True,
featurewise_std_normalization=True,
rotation_range=20,
width_shift_range=0.2,
height_shift_range=0.2,
horizontal_flip=True,
validation_split=0.2)
compute quantities required for featurewise normalization
(std, mean, and principal components if ZCA whitening is applied)
datagen.fit(x_train)
fits the model on batches with real-time data augmentation:
model.fit(datagen.flow(x_train, y_train, batch_size=32,
subset="'training'),
validation_data=datagen.flow(x_train, y_train,
batch_size=8, subset='validation'),
steps_per_epoch=len(x_train) / 32, epochs=epochs)

Image Data Augmentation in PyTorch

class CatsDogsDataSet(Dataset):
def __init__(self, train_dir, transform = train_transforms):
self.train_dir = train_dir
self.transform = transform
self.images = |
self.labels = |
for fname in os.listdir(train_dir):

]
]

self.images.append(fname)
train_transforms = transforms.Compose(| if 'cat' in fname.split('.')[@]:
transforms.Resize(256), self.labels.append(1)
else:
self.labels.append(8)

transforms.ColorJitter(),
transforms.RandomCrop(224),
transforms.RandomHorizontalFlip(), dar " jan (meif):
transforms.Resize((32,32)), return len(self.images)

transforms.ToTensor(),

transforms.Normalize(mean=(0.5,), std=(8.5,))]) def __getitem__(self, idx)
img = Image.open(os.path.join(self.train_dir, self.images[idx]))

if self.transform is not None:
img = self.transform(img)
else:

img = np.array(img).astype('float32')

return img, self.labels[idx]

def split(self, start, end):
return self.labels[start:end+1]

Deep Learning Implementation

Two Main Frameworks:
TensorFlow and PyTorch

L

O PyTOI’Ch TensorFlow

Two Main Frameworks:
TensorFlow and PyTorch

TensorFlow
* Developed by Google
* Most popular DL framework in industry

* (Tiny sample of) examples of users: Google, Airbnb, Coca Cola, GE Healthcare, Intel, Lenovo, Paypal, Qualcomm, Spotify,
Texas Instruments, Twitter, Uber, JPMorgan Chase, Capital One, SeatGeek, WeightWatchers, Credit Karma, Grammarly,
Dropbox, Upwork, Boeing, Liberty Mutual Insurance, Codeacademy, Box, McDonald’s, Merck, McKinsey, Unity, DE Shaw,
Tempus, Nike, DoorDash, Etsy, ...

PyTorch
* Developed by Meta
* Most popular DL framework in research

» (Tiny sample of) examples of users: Meta (Facebook, Instagram), academic research labs, OpenAl, Microsoft, Toyota,
Tesla, Lyft, Walmart, NVIDIA, Wells Fargo, Airbnb, Genentech, ...

In practice, you can know either in terms of getting jobs (job requirements like “Development experience in deep learning
frameworks such as PyTorch or TensorFIow”$

Two Main Frameworks:
TensorFlow and PyTorch

TensorFlow Will use TensorFlow for this class, but PyTorch is
easy to learn if you already know deep learning

* Developed by Google
fundamentals and TensorFlow.

* Most popular DL framework in industry

* (Tiny sample of) examples of users: Google, Airbnb, Coca Cola, GE Healthcare, Intel, Lenovo, Paypal, Qualcomm, Spotify,
Texas Instruments, Twitter, Uber, JPMorgan Chase, Capital One, SeatGeek, WeightWatchers, Credit Karma, Grammarly,
Dropbox, Upwork, Boeing, Liberty Mutual Insurance, Codeacademy, Box, McDonald’s, Merck, McKinsey, Unity, DE Shaw,
Tempus, Nike, DoorDash, Etsy, ...

PyTorch
* Developed by Meta
* Most popular DL framework in research

» (Tiny sample of) examples of users: Meta (Facebook, Instagram), academic research labs, OpenAl, Microsoft, Toyota,
Tesla, Lyft, Walmart, NVIDIA, Wells Fargo, Airbnb, Genentech, ...

In practice, you can know either in terms of getting jobs (job requirements like “Development experience in deep learning
frameworks such as PyTorch or TensorFIow”$

Object Detection

Goal of Object Detection

Idea #1: Brute Force

* Apply many crops of the image
* Run a CNN through each crop

e
B *,.

Idea #1: Brute Force

* Apply many crops of the image
* Run a CNN through each crop

Issues:

* Need to apply CNN to huge number of
locations, scales, and aspect ratios
* Very computationally expensive!

/dea #2: R-CNN (2014)

e Same as idea #1, except identify a small number of region proposals
using a “selective search” algorithm (many possible algorithms)

R-CNN: Regions with CNN features
warpe¢d region

aeroplane? no.

= ’%‘%é person? yes.
CNN'\ :

tvmonitor? no.

1. Input 2. Extract region 3. Compute 4. Classify
image proposals (~2k) CNN features regions

Selective Search in R-CNNs

Algorithm 1: Hierarchical Grouping Algorithm

Input: (colour) image
Output: Set of object location hypotheses L

Obtain initial regions R = {ry,---,r,} using [13]
Initialise similarity set S = 0 . C f |
foreach Neighbouring region pair (r;,rj) do apture all scales

Calculate similarity s(r;, r;) * Fastto compute
S=SUs(ri,rj) * Diversification

e @Goal:

while S # 0 do .
Get highest similarity s(r;,7;) = max(S)

Merge corresponding regions r; = r; Ur;

Remove similarities regarding r; : S = S\ s(r;, %)

Remove similarities regarding r; : S = S\ s(r«,7})

Calculate similarity set S; between r; and its neighbours

S=8SUS§;

R=RUr;

Extract object location boxes L from all regions in R

No need to memorize this algorithm; just know that
there are many unsupervised ways of producing
regions from an image. This is just one of them.

R-CNN continued

e Convolutional layers are
used as a feature extractor

* An SVM is used to perform
the final classification

Bbox reg || SVMs
Bbox reg || SVMs
Bbox reg SVMs
Conv
Conv Net
Net
Conv

R-CNN continued

e Convolutional layers are
used as a feature extractor

* An SVM is used to perform
the final classification

Issues:

e Very slow: need to do ~2000 independent
forward passes for each image
* Takes about 47 seconds to run per image
e Selective Search is a fixed algorithm: no
learning is involved. Can we do better?

Bbox reg || SVMs

Bbox reg || SVMs
Bbox reg SVMs
Conv
Net
Conv

Conv
Net

|[dea #3: Fast R-CNN (2015)

e Use a fixed region proposal method like in R-CNN, but...
* Feed whole image through a single CNN to make predictions per

Region
Proposal
Eg:Selective
search
c
units
ROI pooling Output size g E
0p=[NX7X71512] E Ob’eCt
& Classification
60 8 Op=[NxC]
—»| =
40 e :
Backbone E g
CNN (VGG) 811 8]
= | = 3
512 ROI Pooling 4096 4096 g BB Regression
units units __% Op = [eg xC4]
w
Fast RCNN Network
c4
units

Region of

Softmax
classifier

Linear +
softmax

Linear

o

FCs

1

o

nterest (Rol) Pooling Layers

Bounding-box
regressors

Fully-connected layers

L /7 /7 “RolPooling” layer

Regions of
Interest (Rols)
from a proposal
method

i i)

ConvNet

y 2 ; /Ltjﬁ/ “conv5” feature map of image

Forward whole image through
ConvNet

Input image

Rol Pooling

* Fixes issue of CNNs requiring a fixed input dimension

4x6 Rol
0.1 0.2 0.3 0.4 0.5 0.6
1 0.7 0.2 0.6 0.1 0.9
0.9 0.8 0.7 0.3 0.5 0.2

3x3 Rol Pooling

|dea #4: Faster R-CNN (2015)

 Same as Fast R-CNN, except a CNN does the ROI proposals
* This CNN is called a “Region Proposal Network”

. . . &, classifier
* Notice a trend: increasingly use ML
'Rul pooling
prupuV ” /
Region Proposal .\cW
feature maps

Region Proposal Network

* Contains a classifier and a regressor

2k scores 4k coordinates | <mm kanchor boxes
* Center of anchor boxes is center of cls 'W\ ’ g Jayee
sliding window

| 256-d

intermediate layer

* Classifier determines the probability t ‘
of a proposal having the target object =R

* Regressor regresses the coordinates \ - \ -
of the proposals sliding Window

cony feature map

* Details beyond scope of this class

Comparison of Detection Speeds (seconds)

R-CNN

SPP-Net

Fast R-CNN

2.3

Faster R-CNN| 0.2

0 15 30 45

|[dea #5: You Only Look Once (YOLO)
(2015-2023)

Divide image into a grid

Use a set of base boxes per grid
Within each grid cell:

* Regress from each of the B base boxes to a final box with 5 numbers: box
coordinates and confidence scores

* Predict scores for each of C classes (including background as a class)
* Looks a lot like a Region Proposal Network, but category-specific

Modifications to YOLO Over Time

e YOLOvV3 model, introduced by Redmon et al. in 2018

e YOLOv4 model, released by Bochkovskiy et al. in 2020,

e YOLOv4-tiny model, research published in 2021

e YOLOR (You Only Learn One Representation) model, published in 2021
e YOLOX model, published in 2021

e NanoDet-Plus model, published in 2021

e PP-YOLOE, an industrial object detector, published in 2022

e YOLOvS model v6.1 published by Ultralytics in 2022

e YOLOV7, published in 2022

Related Deep Computer Vision Tasks

Knowledge Scene Graph Prediction

Object
Proposals

Graph
Inference

face

mountain —~ behind —~horse
e
riding
/

man —— wearing — hat
\

wearing — shirt

3D Object Detection

Pose Estimation

!l -

Object Tracking

Tracking *

Multiple Obje_ct/,// o

Variational Autoencoders (VAEs)
(first proposed 2013,
good examples starting around 2017)

Variational Autoencoder (VAE)

Key idea: sample from the “latent space” generate data.

Latent state
distributions

Sample from
distributions

7 /
P N\ /
| J
/] - / 'll '(f {
S \ / /
\ /| / FALTZ A
.\\\ ” ‘|‘\\ 'y v"
\/ \\ /(_ >\/-r A \ /
//‘_4‘,\(' < ALY
-~ N\ . '} \f :‘
Variance ~ \ AV
e N 9
N \ XN
N ¥/ \\
~ /
\\@

/) A A
/ Al {f \
2N)/ {f A '.l.
{ / J Y/ /
r/ / / \
/ ¢/
l"'
J
J rd
&
r/'

ENCODER

DECODER

)

Variational Autoencoder (VAE)

Key idea: sample from the “latent space” generate data.

encode > decode >
Inference Generative

Distribution

VAE Loss Function

[x-d(2) [|* + KLI , N(O, 1)]

VAE Loss Function

| x-d(2) |? + KL ,N(O, 1)]

Reconstruction Error term:
Same as a regular autoencoder

VAE Loss Function

H -d()”2 1 KL[IN(OI I)]

\ }
|

Reconstruction Error term:
Same as a regular autoencoder

“What is the distance between x and the
resulting of running the decoder through
the latent space z?”

VAE Loss Function

|| x-d(2) |[> + KLI , N(O,)]

\) \

| |
Reconstruction Error term: KL Divergence term:
Same as a regular autoencoder If latent space distribution differs from a
sWhat is the distance between x and the standard normal distribution, impose a
resulting of running the decoder through pena|ty (otherwise, may learn to make

the latent space z?”
variance O, thus functlonlng daS d plaln

autoencoder)

VAE Loss Function

(KL Divergence is a popular distance metric between probability distributions)

|| x-d(2) |[> + KLI , N(O,)]

\) \ }

Reconstruction Error term: KL Divergence term:
Same as a regular autoencoder If latent space distribution differs from a
sWhat is the distance between x and the standard normal distribution, impose a

resulting of running the decoder through pena|ty (otherwise, may learn to make
the latent space z?”) . . .
variance O, thus functlonlng dSd plaln
autoencoder)

VAE Loss Function

In practice, use a hyperparameter to control how much to weight one term vs another (similar to A in L1/L2 regularization).

> <

-d(2) ||? +KL[

In practice, this hyperparameter is made larger with each consecutive _ 100%
epoch (“KL Annealing”) 5 80%

' 2 e0%

E 40%

This prevents just optimizing the KL term at first without learning a useful ; -
representation, which happens in practice. e

, N(O,)]

8.0

0

L 7.0
‘60 3
' 50 B
L 40 E
{30 8
L 20 g

me——1

I

10000 20000

=== KL term weight

Step

r 1.0

0.0
30000 40000 50000

— KL term value

Applications of VAEs:
Examples of Sampling from the Latent Space

Latent space

(21, 14]

Personality (z)

A

Zhang, Zhifei, Yang Song, and Hairong_ Qi. "Age progression/regression by conditional adversarial
autoencoder.” Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.

Component 3

Component 2

8
R20><32 S]R20><32
RS 23% 3

R3lx16 R79X16 R79%32 p314x 16 R5023x 3
R1256% 16

]R1256X 16

=2 =3 =4

j=-4 j=3 j=2 j=1 j=0(mean) j=1
Fig. 3. Sampling from the latent space of the mesh autoencoder around the mean face
7 = 0 along 3 different components.

Fig. 2. Convolutional Mesh Autoencoder: The red and blue arrows indicate down-
sampling and up-sampling layers respectively.

Component 1

Ranjan, Anurag, et al. "Generating 3D faces using convolutional mesh autoencoders." Proceedings of
the European conference on computer vision (ECCV). 2018.

Input

Su

Fig.5. Synthesis results of all the emotion classes and their interpolation using the CDAAE (N2) network. The interpolation is obtained by setting
the label values of the two emotions to 0.5. (N:neutral, H:happiness, Sa:sadness, A:anger, D:disgust, C:contempt, F:fear, Su:surprise)

Zhou, Yugian, and Bertram Emil Shi. "Photorealistic facial expression synthesis by the conditional
difference adversarial autoencoder." 2017 seventh international conferénce on affective computing and
intelligent interaction (ACII). IEEE, 2017.

wi w2 w3 w4 w5 w6 w7 w8 w9 wi0 wil wi2 wi3 wi4 wi5 wi w2 w3 w4 w5 w6 w7

ONONONONONONONONORNORONORONONO

w coder

ONONONONONONONONONONONONONONO

wi w2 w3 w4 w5 w6 w7 w8 w9 wi0 wil wi2 wi3 wi4 wi5 (c) Hybrid model with ByteNet
(a) Fully feed-forward component of our VAE model decoder

Semeniuta, Stanislau, Aliaksei Severyn, and Erhardt Barth. "A hybrid convolutional
variational autoencoder for text generation." arXiv preprint arXiv:1702.02390 (2017).

Molecule 0 Tree decomposition

S ”\K.,. &
S N/ v\s."::N P
O Emd =~ O BN
cl @ ', Clusters
| |
Molecular Junction
Tree T |
c /
Encode l (Sec 2.2) Encode l (Sec 2.3)
| BN B BN e ol BB B BN |
l Decode l (Sec 2.4)
o]
S _~ Decode | @
N e— N
(Sec 2.5)

Figure 3. Overview of our method: A molecular graph G is first
decomposed into its junction tree 7¢, where each colored node in
the tree represents a substructure in the molecule. We then encode
both the tree and graph into their latent embeddings z7 and z¢.
To decode the molecule, we first reconstruct junction tree from z7,
and then assemble nodes in the tree back to the original molecule.

Jin, Wengong, Regina B_arzila)/, and Tommi Jaakkola. "Junction tree variational autoencoder for
molecular graph generation." International conference on machine learning. PMLR, 2018.

TLT T4+l LT
L Lyl +T
TLLTH LT LT
A LTTrT4hLlLL
TLd4rLriad

e

PO DU S50 FNPS P SN

A

L+ T AL L L L

T LA AL
LTLLTL+ 1L
A bt A LT

alenko, and N. Yu Zolotykh. "Elect_rocardiooc%)ram eneration and feature
iational ncoder." arXiv preprint arXiv:2002.00254 ?2020).

Generative Adversarial Networks (GANSs)
(first proposed 2014,
good examples starting around 2017)

Generative Adversarial Network (GAN)

GENERATOR
“The Artist” :
A neural network tryingto —
create pictures of cats that

>ENERATOR

look real.
Thousands of real-world
images labeled “CAT”
DISCRIMINATOR
“The Art Critic”
A neural network examining —> DISCRIMINATOR -

cat pictures to determine if
they're real or fake.

o

TRAINING SET

Generative Adversarial Network (GAN)

ﬁ[REAL-WORLD IMAGE } q

GENERATOR

%g@

DISCRIMINATOR

D@@@

REAL

FAKE

GAN Training Process

» Generator G produces noise

« Discriminator D learns to classify noise vs. real
* D tells G how to make noise look more real

« (G starts generating real-looking images

While True:

D gets confused, tries harder to distinguish real
vs. fake images
G gets better at generating fake images

D gets better at identifying fake images

Generator

Random

NG
>

: /.\E
) i

2
\

p

N

S
)
U
6
=

(
>

(,4

GRL

Real Data

=lE" - BEEI-
%Eiﬂihﬂﬂt

=
IIIH”I!HI!I
=PAST T P P
dERE=Sast

Discriminator
N 7
O O\
e 3 ~ \,
% (\/\ : \>)
o o /y
2 Y/
_/ “r
o O

Classification

_—>Y

GAN Training Process

First Many attempts Even more
attempt later attempts later

S e .

GENERATOR GENERATOR GENERATOR
! \f

DISCRIMINATOR DISCRIMINATOR DISCRIMINATOR

Multiple Interacting Neural Networks

This is the first time in this class where we build a single system with
multiple neural networks which interact with each other

This is a recurring theme in many new areas of deep learning

GAN Loss Function

min max V' (D, GG)
G D

\ I
|

Minimize loss for Generator; Maximize loss for Discriminator

‘(D G) = E:pr,;,,“, (_.r)[lOgD(I)] +]Ezwp; (2) [109;(1 o D(("(‘:))]
\] \)

Y |
Discriminator Discriminator output
output for for generated fake

real data x data G(z)

GAN Loss Function
min max V' (D, G)

G D For Discriminator:

Maximize to get D(X) as closeto1l Maximize to get D(G(z)) as closeto 0

\ \
{ | |
V(D,G) = Esnpiara(@)|l08D(2)] + E.p, () [log(l — D(G(2))]
\)
\ Y l Y
Discriminator Discriminator output for
output for real generated fake data
data x: as close G(z): as close to 0 as

to 1 as possible possible

GAN Loss Function

For Generator (only cares about generated images):

Minimize to get D(G(z)) as close to 1

A
{ \

E:wp;(:) [lOg(l o D(G(:))J

\ }
|

Discriminator output for
generated fake data
G(z): as close to 1 as

possible

GAN Training Process

Alternate between:

* Gradient ascent for Discriminator

0% [Berpia,o 108 Do, (2) + Exp(o)108(1 — D, (Go, (2))

 Gradient descent for Generator

rréic;n L ~op(2) log(1 — Dy, (Geg (2)))

max E,. () log(De,(Go,(2))) N

—10 H

Practical Consideration #1

In practice, gradient ascent to maximize likelihood of discriminator
being wrong has a higher gradient signal than minimizing likelihood of
discriminator being correct when the sample is likely fake, so this works
better and is therefore what tends to be implemented

5

0

J(G)

—15 k

—20

S~

— Minimax
— Non-saturating heuristic

—— Maximum likelihood cost

| | | |
0.0 0.2 0.4 0.6 0.8 1.0

D(G(2))

There are several other practical things to
figure out to successfully train a GAN

* The model parameters oscillate, destabilize and never converge
* The generator produces limited varieties of samples

* Gradients “vanish” and learn nothing

e Overfitting

* Highly sensitive to the hyperparameter selection

e ... (the list goes on) ...

But if you eventually get it right, the applications
can be (and have been) very powerful...

Applications of Generative Models

www.thispersondoesnotexist.com

http://www.thispersondoesnotexist.com/

Interpolating between random points in

\atent space

6 ’ﬁv @:‘ 3,_. ..Au. nu: -.M..

éé%%::;;

) 530 5
QNNvaviY:vﬁ vJY F
LE ’AUV..DJ.& e
‘m.v.r!uwv.rv!v[vlv La

8D 8D 4 45 45N & pEn .
9 D D D
‘9 ‘e ‘9 .h/ $5N 28N &N L&

.ue B3 B 35 35 25 45 om0

,.”w.wv B3 B 55 280 o a0

Latent Space Math

smiling neutral neutral

smiling man
woman woman man °

Latent Space Math

Samples
from the
model

Average Z
vectors, do
arithmetic

COArse styles
(4 - 8%)

Middie styes
116 = 327)

Other Applications of Generative Models

* Deep fakes

* Photograph editing

* Inspiration for music, art, designs, ...

* Example generation

* Converting one modality to another (e.g., image to text)

* Data augmentation
* For general performance increase
* For creating fairer models

Obama Deepfake (2018)

Volodymyr Zelenskyy Deepfake (2022)

