
Deep Learning for Sequences
ICS/DATA 435 and ICS 635

Spring 2023

Recurrent Neural Networks (RNNs)

Basic RNN

Three Weight Matrices in an RNN:

…

Wya

Wax

Waa

RNN

RNN

Advantages of RNNs

• Can work with any input sequence length
• Since same weight matrices are used at each time step

• Model size is same regardless of input sequence length

• Computation takes into account historical information

One-to-One Prediction

One-to-Many Prediction

(Example: music generation)

Many-to-One Prediction

(Example: text sentiment classification)

Many-to-Many Prediction

(Example: named entity recognition)

Bidirectional RNNs

Deep RNN

RNN Loss Function

The loss function of all time steps is defined based on the loss at every
time step as follows:

Backprop through Time

Backpropagation is done at each point in time. At timestep T, the
derivative of the loss L with respect to weight matrix W is expressed as
follows:

The Problem: Vanishing/Exploding Gradients

Remember: gradients of NNs involve many
multiplications, with more multiplications per layer

Vanishing/Exploding Gradients

Vanishing Gradients:
• Sequence of length 100 has O(100) multiplications
• Let’s say each connecting weight is 0.5
• 0.5100 = 7.89 x 10-31

Exploding Gradients:
• Sequence of length 100 has O(100) multiplications
• Let’s say each connecting weight is 2
• 2100 = 1.27 x 1030

Vanishing/Exploding Gradients

Vanishing Gradients:
• Sequence of length 300 has O(300) multiplications
• Let’s say each connecting weight is 0.5
• 0.5300 = 4.91 x 10-91

Exploding Gradients:
• Sequence of length 300 has O(300) multiplications
• Let’s say each connecting weight is 2
• 2300 = 2.04 x 1090

Remedy for the Vanishing Gradient Problem:
Long Short-Term Memory (LSTM) Networks

LSTMs

LSTM cells have “gating mechanisms” which allow it to retain the
important information from previous time steps in the long-term (and
short-term):

• Input gate: determines how much of the input node’s value should be
added to the current memory cell internal state
• Forget gate: determines whether to keep the current value of the

memory or flush it
• Output gate: determines whether the memory cell should influence

the output at the current time step

LSTM Cell

Breaking It Down: Gates

Breaking it Down: Input Node

Breaking it Down: Memory Cell Internal State

The input gate controls
how much we take new
data into account and the
forget gate controls how
much of the old cell
internal state we retain.

Breaking it Down: Hidden State

When the output gate is close to
1, we allow the memory cell
internal state to impact the
subsequent layers uninhibited,
whereas for output gate values
close to 0, we prevent the
current memory from impacting
other layers of the network at
the current time step.

LSTMs

LSTM cells have “gating mechanisms” which allow it to retain the
important information from previous time steps in the long-term (and
short-term):

• Input gate: determines how much of the input node’s value should be
added to the current memory cell internal state
• Forget gate: determines whether to keep the current value of the

memory or flush it
• Output gate: determines whether the memory cell should influence

the output at the current time step

State-of-the-art for NLP until 2017:
Word Embeddings + Recurrent Neural Networks

State-of-the-art Pre-2017

Word
Embedding

Vector

Word
Embedding

Vector

Word
Embedding

Vector

Word
Embedding

Vector

LSTM milestones:
• Google starts using LSTMs

for speech recognition on
Google Voice (2015)

• Amazon generates the
voices behind Alexa using
bidirectional LSTMs for
text-to-speech (2016)

• Facebook performed some
4.5 billion automatic
translations every day
using LSTMs (2017)

State-of-the-art for NLP since 2017:
Transformer Models

Transformer Models

Looks complex, but not
complex when you break it
down.

We have already learned about
many of these components.

Transformer Models

We already know about these
types of layers.

Transformer Models

These operations are not
central to Transformers but
make neural networks easier to
train in general.

Transformer Models

These new layers are central to
what makes Transformers the
state of the art today. Let’s start
by understanding Attention, then
Multi-Head Attention, then
Masked Multi-Head Attention.

“Attention Is All You Need” (2017)

How much should each item in a sequence weight / prioritize / attend
to elements of another sequence?

Self-Attention

How much should each item in a sequence weight / prioritize / attend
to elements of itself?

Implementing Self-Attention

Q, K, and V
Queries are representations of the word in question
Keys are representations of every other word that the Query word is
compared against
Values are different representations of the Keys / words that the Query
word is compared against

Database Analogy:

Self-Attention

How much should each item in a sequence weight / prioritize / attend
to elements of itself?

Keys

Query

Self-Attention Deconstructed
The Query (Q), Key (K), and Value (V) are representations of the word
which are learned by the Transformer network. Multiply corresponding
weight matrix by input to get Q / K / V vectors.

Self-Attention Deconstructed

Recall that we can often use dot product to measure similarity.
We want the similarity between the key of each word and the value of
every other word.

Self-Attention Deconstructed

As usual, we can apply the Softmax function to get probabilities:

Softmax(Q.KT) gives us a similarity matrix
between each word and every other word

Self-Attention Deconstructed

So far, we already have most of Self-Attention deconstructed:

This part is covered so far.

Self-Attention Deconstructed

So far, we already have most of Self-Attention deconstructed:

What about V?

Self-Attention Deconstructed
Since we ended up with a softmax probability score for each position of
the sequence, we can multiply it by a representation of the input
word/element to get a vector which will be passed to the next layer:

Multiply attention weights Softmax(Q.KT) by V
to get the output weighted values

Multiply attention weights Softmax(Q.KT) by V
to get the output weighted values

Multiply attention weights Softmax(Q.KT) by V
to get the output weighted values

Self-Attention: Main Takeaway
How much should each item in a sequence weight / prioritize / attend
to elements of itself?

Keys

Query

Multi-Headed Attention
Calculate attention differently in multiple attention “heads”
This gives the attention layer multiple “representation subspaces” and
expands the model’s ability to focus on different positions

Multi-Headed Attention

Attention throughout the Transformer

Transformers

Transformers

Transformers

Transformers

Masked Attention

In the decoder, the self-attention layer is only allowed to attend to
earlier positions in the output sequence. This is done by masking future
positions (setting them to -infinity) before the softmax step in the self-
attention calculation.

Transformers

Positional Embeddings

Positional embeddings explicitly encode the position of each input
element within the sequence.

Transformer-Inspired Models

Bidirectional Encoder Representations from
Transformers (BERT) (2018)

BERT

• Composed of Transformer encoder layers
• BERT was pre-trained on the Toronto BookCorpus (800M words)

and English Wikipedia (2,500M words)
• The power of the BERT models largely comes from how it is pre-

trained: using labels automatically derived from the text rather than
human-generated labels
• This enables the bottleneck of this method to be the amount of training data

rather than the amount of human labels
• The broad term for this technique is self-supervised learning

BERT Pre-Training Task #1:
Masked Language Modeling

Randomly mask out words and predict the missing words

BERT Pre-Training Task #2:
Next Sentence Prediction

Predict whether one sentence comes after the next (binary classification)

Large Pre-Trained Language Models

• BERT was the start of an emerging trend: large language models

• Large language models pre-trained on as much text as can be
collected and stored on a computer

• Transfer learning over pre-trained language models like BERT often
yields state-of-the-art performance

GPT: another large language Transformer model

Generative Pre-trained Transformer (GPT)
• GPT-1 (2018, proof of concept not released publicly)
• GPT-2 (2019)
• GPT-3 (2020)
• GPT-4 (2023)

GPT is a Transformer Decoder

Transformer Encoders (e.g., BERT)
• Use all sequence tokens to attend to each token in the sequence

(unmasked attention)

Transformer Decoders (e.g., GPT)
• Use only the tokens preceding the current token to attend to each

token in the sequence (masked attention)
• This makes it natural for autoregressive modeling (predicting the next

time step from the previous time steps)

GPT Architecture

Generative Pre-training for GPT
Predict the next word.
Just like BERT pre-training, doesn’t require human labels! Just need text.

Generative Pre-training for GPT

Generative Pre-training for GPT

1.Sample text from the pre-training corpus

2.Predict the next token with our model

3.Use stochastic gradient descent (SGD) or any other optimizer to
increase the probability of the correct next token

4.Repeat

At this point in the class, you should be able to
understand the original GPT paper’s description of
this process. 🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉

The authors then fine-tune to several tasks

GPT1 vs 2 vs 3 vs 4

Each successive GPT version
is:
• Much larger
• Trained on a larger dataset
• Has minor architectural

differences to allow for
scaling

GPT-2 Architecture and Details
• 12-layer decoder-only Transformer with 12 masked self-attention heads
• the learning rate was increased linearly from zero over the first 2,000 updates, to a maximum of 2.5×10−4,

and annealed to 0 using a cosine schedule

“We train for 100 epochs on minibatches of 64 randomly sampled, contiguous sequences of 512 tokens. Since
layernorm is used extensively throughout the model, a simple weight initialization of N(0,0.02) was sufficient.
We used a bytepair encoding (BPE) vocabulary with 40,000 merges and residual, embedding, and attention
dropouts with a rate of 0.1 for regularization. We also employed a modified version of L2 regularization
proposed in Loshchilov et al. 2017, with w = 0.01 on all non bias or gain weights.

[...]

We used learned position embeddings instead of the sinusoidal version proposed in the original work.

[...]

Unless specified, we reuse the hyperparameter settings from unsupervised pre-training. We add dropout to the
classifier with a rate of 0.1. For most tasks, we use a learning rate of 6.25e-5 and a batchsize of 32. Our model
finetunes quickly and 3 epochs of training was sufficient for most cases. We use a linear learning rate decay
schedule with warmup over 0.2% of training. λ was set to 0.5.”

GPT-2 Architecture and Details
• 12-layer decoder-only Transformer with 12 masked self-attention heads
• the learning rate was increased linearly from zero over the first 2,000 updates, to a maximum of 2.5×10−4,

and annealed to 0 using a cosine schedule

“We train for 100 epochs on minibatches of 64 randomly sampled, contiguous sequences of 512 tokens. Since
layernorm is used extensively throughout the model, a simple weight initialization of N(0,0.02) was sufficient.
We used a bytepair encoding (BPE) vocabulary with 40,000 merges and residual, embedding, and attention
dropouts with a rate of 0.1 for regularization. We also employed a modified version of L2 regularization
proposed in Loshchilov et al. 2017, with w = 0.01 on all non bias or gain weights.

[...]

We used learned position embeddings instead of the sinusoidal version proposed in the original work.

[...]

Unless specified, we reuse the hyperparameter settings from unsupervised pre-training. We add dropout to the
classifier with a rate of 0.1. For most tasks, we use a learning rate of 6.25e-5 and a batchsize of 32. Our model
finetunes quickly and 3 epochs of training was sufficient for most cases. We use a linear learning rate decay
schedule with warmup over 0.2% of training. λ was set to 0.5.”

You already know all this stuff!!!

Transformers have also yielded state-of-the-
art computer vision performance

Self-Supervised Learning

• Generalization of the pre-training in BERT and GPT models

• Pre-training a neural network’s weights using y_train that does not come
from human labels is a new trend called “self-supervised learning”

• BERT and GPT were the first popular example of this, in the context of NLP

• Now common practice in a variety of domains

Self-Supervised Learning for Images:
Colorization

Self-Supervised Learning for Images:
Inpainting

Self-Supervised Learning for Images:
Jigsaw

Self-Supervised Learning for Images:
Jigsaw

Self-Supervised Learning for Images:
Geometric Transformations

Self-Supervised Learning for Images:
Image Clustering

Self-Supervised Learning for Videos:
Frame Ordering

Contrastive Self-Supervised Learning

Some Big Takeaways

• There are countless ways to design a deep neural network
• The popular ones are often the ones that happened to be trained with lots of computational

power
• So don’t memorize all of the architectures we learned about – just the big ideas and core

building blocks (which are reused across network architectures)
• There are a small set of core deep learning building blocks to remember

• Dense layers, Convolutional+Pooling layers, Recurrent layers (incuding LSTMs), Attention
layers, and variations/hyperparameters of all of these (including activation functions and
which to use when)

• Feature representation matters
• This is why we have transfer learning, self-supervised pre-training, etc.

• The neural network will learn what you tell it to learn via the loss function (not
specific to deep learning)

