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Recurrent Neural Networks (RNNs)



Basic RNN



Three Weight Matrices in an RNN:
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Advantages of RNNs

• Can work with any input sequence length
• Since same weight matrices are used at each time step

• Model size is same regardless of input sequence length

• Computation takes into account historical information



One-to-One Prediction



One-to-Many Prediction

(Example: music generation)



Many-to-One Prediction

(Example: text sentiment classification)



Many-to-Many Prediction

(Example: named entity recognition)



Bidirectional RNNs



Deep RNN



RNN Loss Function

The loss function of all time steps is defined based on the loss at every 
time step as follows:



Backprop through Time

Backpropagation is done at each point in time. At timestep T, the 
derivative of the loss L with respect to weight matrix W is expressed as 
follows:



The Problem: Vanishing/Exploding Gradients



Remember: gradients of NNs involve many 
multiplications, with more multiplications per layer



Vanishing/Exploding Gradients

Vanishing Gradients:
• Sequence of length 100 has O(100) multiplications
• Let’s say each connecting weight is 0.5
• 0.5100 = 7.89 x 10-31

Exploding Gradients:
• Sequence of length 100 has O(100) multiplications
• Let’s say each connecting weight is 2
• 2100 = 1.27 x 1030



Vanishing/Exploding Gradients

Vanishing Gradients:
• Sequence of length 300 has O(300) multiplications
• Let’s say each connecting weight is 0.5
• 0.5300 = 4.91 x 10-91

Exploding Gradients:
• Sequence of length 300 has O(300) multiplications
• Let’s say each connecting weight is 2
• 2300 = 2.04 x 1090



Remedy for the Vanishing Gradient Problem: 
Long Short-Term Memory (LSTM) Networks



LSTMs

LSTM cells have “gating mechanisms” which allow it to retain the 
important information from previous time steps in the long-term (and 
short-term):

• Input gate: determines how much of the input node’s value should be 
added to the current memory cell internal state
• Forget gate: determines whether to keep the current value of the 

memory or flush it
• Output gate: determines whether the memory cell should influence 

the output at the current time step



LSTM Cell



Breaking It Down: Gates



Breaking it Down: Input Node



Breaking it Down: Memory Cell Internal State

The input gate controls 
how much we take new 
data into account and the 
forget gate controls how 
much of the old cell 
internal state we retain.



Breaking it Down: Hidden State

When the output gate is close to 
1, we allow the memory cell 
internal state to impact the 
subsequent layers uninhibited, 
whereas for output gate values 
close to 0, we prevent the 
current memory from impacting 
other layers of the network at 
the current time step.



LSTMs

LSTM cells have “gating mechanisms” which allow it to retain the 
important information from previous time steps in the long-term (and 
short-term):

• Input gate: determines how much of the input node’s value should be 
added to the current memory cell internal state
• Forget gate: determines whether to keep the current value of the 

memory or flush it
• Output gate: determines whether the memory cell should influence 

the output at the current time step



State-of-the-art for NLP until 2017:
Word Embeddings + Recurrent Neural Networks



State-of-the-art Pre-2017
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LSTM milestones:
• Google starts using LSTMs 

for speech recognition on 
Google Voice (2015)

• Amazon generates the 
voices behind Alexa using 
bidirectional LSTMs for 
text-to-speech (2016)

• Facebook performed some 
4.5 billion automatic 
translations every day 
using LSTMs (2017)



State-of-the-art for NLP since 2017:
Transformer Models



Transformer Models

Looks complex, but not 
complex when you break it 
down.

We have already learned about  
many of these components.



Transformer Models

We already know about these 
types of layers.



Transformer Models

These operations are not 
central to Transformers but 
make neural networks easier to 
train in general.



Transformer Models

These new layers are central to 
what makes Transformers the 
state of the art today. Let’s start 
by understanding Attention, then 
Multi-Head Attention, then 
Masked Multi-Head Attention.



“Attention Is All You Need” (2017)

How much should each item in a sequence weight / prioritize / attend 
to elements of another sequence?



Self-Attention

How much should each item in a sequence weight / prioritize / attend 
to elements of itself?



Implementing Self-Attention



Q, K, and V
Queries are representations of the word in question
Keys are representations of every other word that the Query word is 
compared against
Values are different representations of the Keys / words that the Query 
word is compared against

Database Analogy:



Self-Attention

How much should each item in a sequence weight / prioritize / attend 
to elements of itself?

Keys

Query



Self-Attention Deconstructed
The Query (Q), Key (K), and Value (V) are representations of the word 
which are learned by the Transformer network. Multiply corresponding 
weight matrix by input to get Q / K / V vectors.



Self-Attention Deconstructed

Recall that we can often use dot product to measure similarity.
We want the similarity between the key of each word and the value of 
every other word.



Self-Attention Deconstructed

As usual, we can apply the Softmax function to get probabilities:



Softmax(Q.KT) gives us a similarity matrix 
between each word and every other word



Self-Attention Deconstructed

So far, we already have most of Self-Attention deconstructed:

This part is covered so far.



Self-Attention Deconstructed

So far, we already have most of Self-Attention deconstructed:

What about V?



Self-Attention Deconstructed
Since we ended up with a softmax probability score for each position of 
the sequence, we can multiply it by a representation of the input 
word/element to get a vector which will be passed to the next layer:



Multiply attention weights Softmax(Q.KT) by V 
to get the output weighted values 



Multiply attention weights Softmax(Q.KT) by V 
to get the output weighted values 



Multiply attention weights Softmax(Q.KT) by V 
to get the output weighted values 



Self-Attention: Main Takeaway
How much should each item in a sequence weight / prioritize / attend 
to elements of itself?

Keys

Query



Multi-Headed Attention
Calculate attention differently in multiple attention “heads”
This gives the attention layer multiple “representation subspaces” and 
expands the model’s ability to focus on different positions



Multi-Headed Attention



Attention throughout the Transformer



Transformers



Transformers



Transformers



Transformers



Masked Attention

In the decoder, the self-attention layer is only allowed to attend to 
earlier positions in the output sequence. This is done by masking future 
positions (setting them to -infinity) before the softmax step in the self-
attention calculation.



Transformers



Positional Embeddings

Positional embeddings explicitly encode the position of each input 
element within the sequence.



Transformer-Inspired Models



Bidirectional Encoder Representations from 
Transformers (BERT) (2018)



BERT

• Composed of Transformer encoder layers
• BERT was pre-trained on the Toronto BookCorpus (800M words) 

and English Wikipedia (2,500M words)
• The power of the BERT models largely comes from how it is pre-

trained: using labels automatically derived from the text rather than 
human-generated labels
• This enables the bottleneck of this method to be the amount of training data 

rather than the amount of human labels
• The broad term for this technique is self-supervised learning



BERT Pre-Training Task #1:
Masked Language Modeling

Randomly mask out words and predict the missing words



BERT Pre-Training Task #2: 
Next Sentence Prediction

Predict whether one sentence comes after the next (binary classification) 



Large Pre-Trained Language Models

• BERT was the start of an emerging trend: large language models

• Large language models pre-trained on as much text as can be 
collected and stored on a computer

• Transfer learning over pre-trained language models like BERT often 
yields state-of-the-art performance



GPT: another large language Transformer model

Generative Pre-trained Transformer (GPT)
• GPT-1 (2018, proof of concept not released publicly)
• GPT-2 (2019)
• GPT-3 (2020)
• GPT-4 (2023)



GPT is a Transformer Decoder

Transformer Encoders (e.g., BERT) 
• Use all sequence tokens to attend to each token in the sequence 

(unmasked attention)

Transformer Decoders (e.g., GPT) 
• Use only the tokens preceding the current token to attend to each 

token in the sequence (masked attention)
• This makes it natural for autoregressive modeling (predicting the next 

time step from the previous time steps)



GPT Architecture



Generative Pre-training for GPT
Predict the next word.
Just like BERT pre-training, doesn’t require human labels! Just need text.



Generative Pre-training for GPT



Generative Pre-training for GPT

1.Sample text from the pre-training corpus

2.Predict the next token with our model

3.Use stochastic gradient descent (SGD) or any other optimizer to 
increase the probability of the correct next token

4.Repeat



At this point in the class, you should be able to 
understand the original GPT paper’s description of 
this process. 🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉



The authors then fine-tune to several tasks



GPT1 vs 2 vs 3 vs 4

Each successive GPT version 
is:
• Much larger
• Trained on a larger dataset
• Has minor architectural

differences to allow for
scaling



GPT-2 Architecture and Details
• 12-layer decoder-only Transformer with 12 masked self-attention heads
• the learning rate was increased linearly from zero over the first 2,000 updates, to a maximum of 2.5×10−4, 

and annealed to 0 using a cosine schedule

“We train for 100 epochs on minibatches of 64 randomly sampled, contiguous sequences of 512 tokens. Since 
layernorm is used extensively throughout the model, a simple weight initialization of N(0,0.02) was sufficient. 
We used a bytepair encoding (BPE) vocabulary with 40,000 merges and residual, embedding, and attention 
dropouts with a rate of 0.1 for regularization. We also employed a modified version of L2 regularization 
proposed in Loshchilov et al. 2017, with w = 0.01 on all non bias or gain weights.

[...]

We used learned position embeddings instead of the sinusoidal version proposed in the original work.

[...]

Unless specified, we reuse the hyperparameter settings from unsupervised pre-training. We add dropout to the 
classifier with a rate of 0.1. For most tasks, we use a learning rate of 6.25e-5 and a batchsize of 32. Our model 
finetunes quickly and 3 epochs of training was sufficient for most cases. We use a linear learning rate decay 
schedule with warmup over 0.2% of training. λ was set to 0.5.”



GPT-2 Architecture and Details
• 12-layer decoder-only Transformer with 12 masked self-attention heads
• the learning rate was increased linearly from zero over the first 2,000 updates, to a maximum of 2.5×10−4, 

and annealed to 0 using a cosine schedule

“We train for 100 epochs on minibatches of 64 randomly sampled, contiguous sequences of 512 tokens. Since 
layernorm is used extensively throughout the model, a simple weight initialization of N(0,0.02) was sufficient. 
We used a bytepair encoding (BPE) vocabulary with 40,000 merges and residual, embedding, and attention 
dropouts with a rate of 0.1 for regularization. We also employed a modified version of L2 regularization 
proposed in Loshchilov et al. 2017, with w = 0.01 on all non bias or gain weights.

[...]

We used learned position embeddings instead of the sinusoidal version proposed in the original work.

[...]

Unless specified, we reuse the hyperparameter settings from unsupervised pre-training. We add dropout to the 
classifier with a rate of 0.1. For most tasks, we use a learning rate of 6.25e-5 and a batchsize of 32. Our model 
finetunes quickly and 3 epochs of training was sufficient for most cases. We use a linear learning rate decay 
schedule with warmup over 0.2% of training. λ was set to 0.5.”

You already know all this stuff!!!



Transformers have also yielded state-of-the-
art computer vision performance



Self-Supervised Learning

• Generalization of the pre-training in BERT and GPT models

• Pre-training a neural network’s weights using y_train that does not come 
from human labels is a new trend called “self-supervised learning”

• BERT and GPT were the first popular example of this, in the context of NLP

• Now common practice in a variety of domains



Self-Supervised Learning for Images: 
Colorization



Self-Supervised Learning for Images: 
Inpainting



Self-Supervised Learning for Images: 
Jigsaw



Self-Supervised Learning for Images: 
Jigsaw



Self-Supervised Learning for Images: 
Geometric Transformations



Self-Supervised Learning for Images: 
Image Clustering



Self-Supervised Learning for Videos: 
Frame Ordering



Contrastive Self-Supervised Learning



Some Big Takeaways

• There are countless ways to design a deep neural network
• The popular ones are often the ones that happened to be trained with lots of computational 

power
• So don’t memorize all of the architectures we learned about – just the big ideas and core 

building blocks (which are reused across network architectures)
• There are a small set of core deep learning building blocks to remember

• Dense layers, Convolutional+Pooling layers, Recurrent layers (incuding LSTMs), Attention 
layers, and variations/hyperparameters of all of these (including activation functions and 
which to use when)

• Feature representation matters
• This is why we have transfer learning, self-supervised pre-training, etc.

• The neural network will learn what you tell it to learn via the loss function (not 
specific to deep learning)


