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Recurrent Neural Networks (RNNs)



Basic RNN
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Three Weight Matrices in an RNN:
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Advantages of RNNSs

* Can work with any input sequence length
* Since same weight matrices are used at each time step

* Model size is same regardless of input sequence length

 Computation takes into account historical information



One-to-One Prediction
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One-to-Many Prediction

(Example: music generation)
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Many-to-One Prediction

(Example: text sentiment classification)
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Many-to-Many Prediction

(Example: named entity recognition)
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Bidirectional RNNs
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RNN Loss Function

The loss function of all time steps is defined based on the loss at every
time step as follows:



Backprop through Time

Backpropagation is done at each point in time. At timestep T, the
derivative of the loss L with respect to weight matrix W is expressed as
follows:
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The Problem: Vanishing/Exploding Gradients
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Remember: gradients of NNs involve many
multiplications, with more multiplications per layer
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Vanishing/Exploding Gradients

Vanishing Gradients:
» Sequence of length 100 has O(100) multiplications

* Let’s say each connecting weight is 0.5
e 0.5100=7.89 x 1031

Exploding Gradients:
» Sequence of length 100 has O(100) multiplications

* Let’s say each connecting weight is 2
e 2100=1.27 x 1030



Vanishing/Exploding Gradients

Vanishing Gradients:
* Sequence of length 300 has O(300) multiplications

* Let’s say each connecting weight is 0.5
e 0.5300=491 x 10°1

Exploding Gradients:
* Sequence of length 300 has O(300) multiplications

* Let’s say each connecting weight is 2
e 2300=2.04 x 10°



Remedy for the Vanishing Gradient Problem:
Long Short-Term Memory (LSTM) Networks

RNN Unit LSTM Unit
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LSTMs

LSTM cells have “gating mechanisms” which allow it to retain the
important information from previous time steps in the long-term (and
short-term):

* Input gate: determines how much of the input node’s value should be
added to the current memory cell internal state

* Forget gate: determines whether to keep the current value of the
memory or flush it

e Output gate: determines whether the memory cell should influence
the output at the current time step



LSTM Cell




Breaking It Down: Gates
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Breaking it Down
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Breaking it Down: Memory Cell Internal State
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Breaking it Down: Hidden State

When the output gate is close to
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LSTMs

LSTM cells have “gating mechanisms” which allow it to retain the
important information from previous time steps in the long-term (and
short-term):

* Input gate: determines how much of the input node’s value should be
added to the current memory cell internal state

* Forget gate: determines whether to keep the current value of the
memory or flush it

e Output gate: determines whether the memory cell should influence
the output at the current time step



State-of-the-art for NLP until 2017:
Word Embeddings + Recurrent Neural Networks



State-of-the-art Pre-2017
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» Google starts using LSTMs
for speech recognition on
Google Voice (2015)

 Amazon generates the
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State-of-the-art for NLP since 2017:
Transformer Models



Transformer Models

Looks complex, but not
complex when you break it
down.

We have already learned about
many of these components.
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Figure 1: The Transformer - model architecture.



Transformer Models
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We already know about these
types of layers.



Transformer Models

Output

Probabilities

Linear

|

[

-
Add & Norm ]
=

Feed

Forward

| Add & Norm |<_:

e | N\
SR RN Multi-Head
Feed Attention
Forward
_l

W)
Add & Normi

N x
f->| Add & Norm | Maskad
Multi-Head Multi-Head
Attention Attention
L L
\ J U ——
Positional Positional
Encodi _9 G' ~adi
ncoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Figure 1: The Transformer - model architecture.
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These operations are not
central to Transformers but
make neural networks easier to
train in general.



Transformer Models
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“Attention Is All You Need” (2017)

How much should each item in a sequence weight / prioritize / attend
to elements of another sequence?

Important
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Unimportant




Self-Attention

How much should each item in a sequence weight / prioritize / attend
tO EIementS Of |tse|f? Layer:| 5 § Attention: Input - Input v

The_ The_
animal_ animal_
didn_ didn_
= | 2
Cross_ Cross_
the_ the_
street_ street_
because_ because_
it_ it_
was_ was_
too_ too_
tire tire

d d



Implementing Self-Attention

Query

KT
Attention(Q, K, V') = softmax( @

Vg
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Queries are representations of the word in question

Q, K, and V

Keys are representations of every other word that the Query word is

compared against

Values are different representations of the Keys / words that the Query

word is compared against

Database Analogy:

Query
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Self-Attention

How much should each item in a sequence weight / prioritize / attend
tO EIementS Of |tse|f? Layer:| 5 § Attention: Input - Input v
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Self-Attention Deconstructed

The Query (Q), Key (K), and Value (V) are representations of the word
which are learned by the Transformer network. Multiply corresponding
weight matrix by input to get Q / K/ V vectors.

Input

Embedding [T T 1] [T T 1]
Queries o [EET =[]
Keys [:I:I:] [:I:I:]

Values [T 1] [T 1]



Self-Attention Deconstructed

Recall that we can often use dot product to measure similarity.

We want the similarity between the key of each word and the value of
every other word.

Similarity(A, B) = s;clzig, .
G _A.BT
imilarity(A,B) = scaling

Q.kT

Similarity(Q, K) = scaling



Self-Attention Deconstructed

As usual, we can apply the Softmax function to get probabilities:

Input

Embedding LT LT
Queries q1 EI:D g2 ED]
Keys D:lj [D]
Values D:Ij D:Ij
Score g1 ® Ki = qi =
Divide by 8 (/dx )

Softmax




Softmax(Q.K") gives us a similarity matrix
between each word and every other word

KT c R3><5

Query matrix: 4 token input sequence

Q E R4 x3 ) - - ) )
embedding vector 1 | | q; ‘ — | W ¢ V| ¢ V| o V| o
“ ‘ lay J \\312 ’ \\313 | |aus ,| s ,| !
embedding vector 2 | | dv |
embedding vector 3 ‘ a3 ‘
embedding vector 4 | | A |
Att € RY®

Embeddings are processed in parallel Attention matrix

with a simple matrix multiplication each dot product show the similarity

between a query and key vector
(softmax is applied row-wise)



Self-Attention Deconstructed

So far, we already have most of Self-Attention deconstructed:
QK*
Vv dk

\ }
|

This part is covered so far.

Attention(Q, K, V') = softmax( )V




Self-Attention Deconstructed

So far, we already have most of Self-Attention deconstructed:

Attention(Q, K, V') = softmax(

What about V?



Self-Attention Deconstructed

Since we ended up with a softmax probability score for each position of
the sequence, we can multiply it by a representation of the input

word/element to get a vector which will be passed to the next layer:
input
Embedding [T T T] LT T[]
Queries o O [T T]
(eys EEE (T
Values T [T
Divide by 8 (v/dx )
Softmax
Sof)‘zmax Djj
[T [T




Multiply attention weights Softmax(Q.K") by V
to get the output weighted values

Keys, Values: 5 token sequence to associate with the input queries

KT c R3><5 14 c 1{3 X 3
ki|  |ko| k3| |ka| ks Vi Vo V3
Query matrix: 4 token input sequence
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embedding vector 4 \ qy |
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Att € R S
Embeddings are processed in parallel Attention matrix The output weighted values:
with a simple matrix multiplication each dot product show the similarity information is aggregated/routed

between a query and key vector
(softmax is applied row-wise)



Multiply attention weights Softmax(Q.K") by V
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Multiply attention weights Softmax(Q.K") by V
to get the output weighted values
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Self-Attention: Main Takeaway

How much should each item in a sequence weight / prioritize / attend
to elements of itself?

Layer:| 5 § Attention: Input - Input =
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it_ it_ Que ry
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Multi-Headed Attention

Calculate attention differently in multiple attention “heads”

This gives the attention layer multiple “representation subspaces” and
expands the model’s ability to focus on different positions

Calculating attention separately in
eight different attention heads

\ 4

ATTENTION ATTENTION ATTENTION
HEAD #0 HEAD #1 HEAD #7




Multi-Headed Attention

1) Concatenate all the attention heads 2) Multiply with a weight
matrix that was trained
jointly with the model

X

3) The result would be the © matrix that captures information
from all the attention heads. We can send this forward to the FFNN




Attention throughout the Transformer

OUTP \“ | am a student

( N )

ENCODERS * DECODERS

. J

INPUT | Je suis etudiant
DECODER 1
( Y
Feed Forward
ENCODER A \_ J
7 | N\ 4
a R r 3
Feed Forward Encoder-Decoder Attention
_ J \_ J
4 pr—— 'Y
( 1 ( )
Self-Attention J Self-Attention
\k ") \. J

1 t



Transformers
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Masked Attention

In the decoder, the self-attention layer is only allowed to attend to
earlier positions in the output sequence. This is done by masking future
positions (setting them to -infinity) before the softmax step in the self-

attention calculation.

Self-Attention Masked Self-Attention

(_+ ) C_ 4
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Positional Embeddings

Positional embeddings explicitly encode the position of each input
element within the sequence.
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Transformer-Inspired Models



Bidirectional Encoder Representations from
Transformers (BERT) (2018)
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BERT

 Composed of Transformer encoder layers

* BERT was pre-trained on the Toronto BookCorpus (800M words)
and English Wikipedia (2,500M words)

* The power of the BERT models largely comes from how it is pre-
trained: using labels automatically derived from the text rather than
human-generated labels

* This enables the bottleneck of this method to be the amount of training data
rather than the amount of human labels

* The broad term for this technique is self-supervised learning



BERT Pre-Training Task #1:
Masked Language Modeling

Randomly mask out words and predict the missing words

BERT

Transformer

Potter is a series fantasy novel by 1L Rowling



BERT Pre-Training Task #2:
Next Sentence Prediction

Predict whether one sentence comes after the next (binary classification)

Sentence 1 Sentence 2 Next Sentence?

| have a class | will be back by 6 \/

| have a class Zebrais a animal ><




Large Pre-Trained Language Models

 BERT was the start of an emerging trend: large language models

* Large language models pre-trained on as much text as can be
collected and stored on a computer

* Transfer learning over pre-trained language models like BERT often
yields state-of-the-art performance



GPT: another large language Transformer model

Generative Pre-trained Transformer (GPT)
* GPT-1 (2018, proof of concept not released publicly)

* GPT-2 (2019)
* GPT-3 (2020)
* GPT-4 (2023)

. Parameter
Model Architecture
count
Original 12-level, 12-headed Transformer
GPT (GPT- | decoder (no encoder), followed by 117 million
1) linear-softmax.
GPT-2 GPT-1, but with modified normalization | 1.5 billion

GPT-2, but with modification to allow )
GPT-3 ) 175 billion
larger scaling

Also trained with both text prediction
and RLHF; accepts both text and .

GPT-4 ) ) ) Undisclosed
images as input. Further details are not

public.!8!

Training data

BookCorpus:1'2] 4.5 GB of text, from 7000
unpublished books of various genres.

WebText: 40 GB of text, 8 million documents,
from 45 million webpages upvoted on Reddit.

570 GB plaintext, 0.4 trillion tokens. Mostly
CommonCrawl, WebText, English Wikipedia,
and two books corpora (Books1 and Books2).

Undisclosed



GPT is a Transformer Decoder

Transformer Encoders (e.g., BERT)

* Use all sequence tokens to attend to each token in the sequence
(unmasked attention)

Transformer Decoders (e.g., GPT)

* Use only the tokens preceding the current token to attend to each
token in the sequence (masked attention)

* This makes it natural for autoregressive modeling (predicting the next
time step from the previous time steps)



GPT Architecture
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Generative Pre-training for GPT

Predict the next word.

Just like BERT pre-training, doesn’t require human labels! Just need text.
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Generative Pre-training for GPT

Decoder-Only Architecture
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Generative Pre-training for GPT

1.Sample text from the pre-training corpus
2.Predict the next token with our model

3.Use stochastic gradient descent (SGD) or any other optimizer to
increase the probability of the correct next token

4.Repeat



At this point in the class, you should be able to
understand the oniginal GET papet s description of
this process. EEELELEEEEEEEEEEE

3.1 Unsupervised pre-training

Given an unsupervised corpus of tokens U = {u;,...,u,}, we use a standard language modeling
objective to maximize the following likelihood:
L,(U) = ZlogP(udui_k,...,u,;_l;@) (1)

where k is the size of the context window, and the conditional probability P is modeled using a neural
network with parameters ©. These parameters are trained using stochastic gradient descent [51].

In our experiments, we use a multi-layer Transformer decoder [34] for the language model, which is
a variant of the transformer [62]. This model applies a multi-headed self-attention operation over the
input context tokens followed by position-wise feedforward layers to produce an output distribution
over target tokens:

ho =UW,+ W,
h; = transformer_block(h;_1)Vi € [1,n] (2)
P(u) = softmax(h, W)
where U = (u_p,...,u_1) is the context vector of tokens, n is the number of layers, W, is the token

embedding matrix, and W), is the position embedding matrix.

3.2 Supervised fine-tuning



The authors then fine-tune to several tasks

3.2 Supervised fine-tuning

After training the model with the objective in Eq. 1, we adapt the parameters to the supervised target
task. We assume a labeled dataset C, where each instance consists of a sequence of input tokens,
x!,...,z™, along with a label y. The inputs are passed through our pre-trained model to obtain
the final transformer block’s activation h;", which is then fed into an added linear output layer with

parameters W, to predict y:

P(y|z',...,z™) = softmax(h]"W,). (3)
This gives us the following objective to maximize:
Ly(C) = ) log P(ylz!,...,z™). 4)
(z,y)

We additionally found that including language modeling as an auxiliary objective to the fine-tuning
helped learning by (a) improving generalization of the supervised model, and (b) accelerating
convergence. This is in line with prior work [50, 43], who also observed improved performance with
such an auxiliary objective. Specifically, we optimize the following objective (with weight A):

L3(C) = L2(C) + A * L1(C) 3)

Overall, the only extra parameters we require during fine-tuning are W, and embeddings for delimiter
tokens (described below in Section 3.3).



GPT1 vs 2

Each successive GPT version
IS:

Model

Original
GPT (GPT-

* Much larger .
* Trained on a larger dataset s

* Has minor architectural GPT-3
differences to allow for
scaling

GPT-4

vs 3vs 4

Architecture

12-level, 12-headed Transformer
decoder (no encoder), followed by
linear-softmax.

GPT-1, but with modified normalization

GPT-2, but with modification to allow
larger scaling

Also trained with both text prediction
and RLHF; accepts both text and
images as input. Further details are not
public.[6]

Parameter
count

117 million

1.5 billion

175 billion

Undisclosed

Training data

BookCorpus:['2] 4.5 GB of text, from 7000
unpublished books of various genres.

WebText: 40 GB of text, 8 million documents,
from 45 million webpages upvoted on Reddit.

570 GB plaintext, 0.4 trillion tokens. Mostly
CommonCrawl, WebText, English Wikipedia,
and two books corpora (Books1 and Books2).

Undisclosed



GPT-2 Architecture and Details

* 12-layer decoder-only Transformer with 12 masked self-attention heads

* the learning rate was increased linearly from zero over the first 2,000 updates, to a maximum of 2.5x10-4,
and annealed to 0 using a cosine schedule

“We train for 100 epochs on minibatches of 64 randomly sampled, contiguous sequences of 512 tokens. Since
layernorm is used extensively throughout the model, a simple weight initialization of N(0,0.02) was sufficient.
e used a bytepair encoding (BPE) vocabulary with 40,000 merges and residual, embedding, and attention
dropouts with a rate of 0.1 for regularization. We also employed a modified version of L2 regularization

proposed in Loshchilov et al. 2017, with w = 0.01 on all non bias or gain weights.

[...]

We used learned position embeddings instead of the sinusoidal version proposed in the original work.

[...]

Unless specified, we reuse the hyperparameter settings from unsupervised pre-training. We add dropout to the
classifier with a rate of 0.1. For most tasks, we use a learning rate of 6.25e-5 and a batchsize of 32. Our model
finetunes quickly and 3 epochs of training was sufficient for most cases. We use a linear learning rate decay
schedule with warmup over 0.2% of training. A was set to 0.5



GPT-2 Architecture and Details

former with 12 masked self-attention heads

ineﬁrl flrom zero over the first 2,000 updates, to a maximum of 2.5x10-4,
edule

e 12-layer

* thelearningra
and annealed to

randomly sampled, contiguous sequences of 512 tokens. Since
el, a simple weight initialization of N(0,0.02) was sufficient.
40,000 merges and residual, embedding, and attention
mployed a modified version of L2 regularization

bias or gain weights.

“We train for 100 epochs on
layernorm is used extensively th

e used a bytepair encoding (BPE)
dropouts with a rate of 0.1 for regulari
proposed in Loshchilov et al. 2017, with

[...]

We used learned position embeddings instead of the sin oposed in the original work.

[...]

\We add dropout to the
of 32. Our model
ing rate decay

Unless specified, we reuse the hyperparameter settings from unsupervi
classifier with a rate of 0.1. For most tasks, we use a learning rate of 6.25e-
finetunes quickly and 3 epochs of training was sufficient for most cases. We u
schedule with warmup over 0.2% of training. A was set to 0.5.”



Transformers have also yielded state-of-the-
art computer vision performance
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Self-Supervised Learning

* Generalization of the pre-training in BERT and GPT models

* Pre-training a neural network’s weights using y_train that does not come
from human labels is a new trend called “self-supervised learning”

* BERT and GPT were the first popular example of this, in the context of NLP

* Now common practice in a variety of domains



Selt-Supervised Learning for Images:
Colorization

Image Colorization
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Selt-Supervised Learning for Images:
Inpainting

Loss
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Selt-Supervised Learning for Images:
Jigsaw

Jigsaw Data Generation
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Selt-Supervised Learning for Images:
Jigsaw
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Self-Supervised

Geometric

Data Generation for Geometric Transformation Recognition
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Selt-Supervised Learning for Images:
Image Clustering

Label Generation by Clustering
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Selt-Supervised Learning for Videos:
Frame Ordering

Frame Order Training Data Generation
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Contrastive Self-Supervised Learning




Some Big Takeaways

* There are countless ways to design a deep neural network

* The popular ones are often the ones that happened to be trained with lots of computational
power

* So don’t memorize all of the architectures we learned about — just the big ideas and core
building blocks (which are reused across network archﬁectures&
* There are a small set of core deep learning building blocks to remember

e Dense layers, Convolutional+Pooling layers, Recurrent layers (incuding LSTMs), Attention
Ia?/]ers, and variations/hyperparameters of all of these (including activation functions and
which to use when)

* Feature representation matters
* This is why we have transfer learning, self-supervised pre-training, etc.

* The neural network will learn what you tell it to learn via the loss function (not
specific to deep learning)



