
Reinforcement Learning
ICS/DATA 435 and ICS 635

Spring 2023

Reinforcement learning (RL)

https://towardsdatascience.com/reinforcement-learning-101-e24b50e1d292

Learning by experience (RL) vs learning by examples (supervised learning)

When is RL used?

• Autonomous vehicles (cars, spacecraft, aircraft,
satellites, submarines, …)
• Robotics
• Recommender systems
• AI for gaming

• Usually as a “test bed” for more real-world ML
• Decision support (e.g., finance/trading)
• Artificial General Intelligence (AGI)

• Maybe one day

Components of an RL system

• Agent: the RL actor (robot, car, etc)
• States: all possible configurations of the

agent
• Actions: the possible actions of the agent
• Reward: feedback from the environment
• Policy: function returning new state given

the current state and an action
• Value: function returning quantification of

reward in the future given the current state
and an action

Wikipedia

Types of environments

• Fully Observable (Chess) vs. Partially Observable (Poker)

• Single Agent (Atari) vs. Multi Agent (Self-Driving Cars)

• Deterministic (Chess) vs. Stochastic (Self-Driving Cars)

• Discrete (Chess) vs. Continuous (Robotic Navigation)

Lex Fridman, MIT 6.S091: Introduction to Deep Reinforcement Learning

Self-driving cars

Agent:

States:

Actions:

Rewards:

Self-driving cars

Agent: the car

States: (Crash or No Crash, Lawful or Unlawful, distance from
destination)

Actions: acceleration, deceleration, steering wheel angle
change

Rewards: -10000 for Crash, +10 for No Crash, -100 for
Unlawful, …

Targeted advertisement recommendation

Agent:

States:

Actions:

Rewards:

Targeted advertisement recommendation

Agent: the recommender system

States:

Actions:

Rewards:

Examples of Reinforcement Learning

Simple Games

Complex Games

Robotics

Including but not limited to Surgical Robotics

Autonomous Vehicles

“Classical” Reinforcement Learning

Ultimate goal: maximize reward

Future Reward:

Discounted Future Reward:

Lex Fridman, MIT 6.S091: Introduction to Deep Reinforcement Learning

Discount Factor: How much weight do we give to rewards in the future?
Higher γ à Incorporate more of the future reward

Rewards are defined by humans:
Demonstrative example

Lex Fridman, MIT 6.S091: Introduction to Deep Reinforcement Learning

Rewards are defined by humans:
Demonstrative example

Lex Fridman, MIT 6.S091: Introduction to Deep Reinforcement Learning

Rewards are defined by humans:
Demonstrative example

Lex Fridman, MIT 6.S091: Introduction to Deep Reinforcement Learning

Rewards are defined by humans:
Demonstrative example

Lex Fridman, MIT 6.S091: Introduction to Deep Reinforcement Learning

Rewards are defined by humans:
Demonstrative example

Lex Fridman, MIT 6.S091: Introduction to Deep Reinforcement Learning

Rewards are defined by humans:
Demonstrative example

Lex Fridman, MIT 6.S091: Introduction to Deep Reinforcement Learning

Many types of RL methods

https://spinningup.openai.com/

Markov Decision Process (MDP)

(S, A, R, P)

S: states
A: actions
R: reward function, R(s, s’, a)
P: transition function, P(s, s’, a) = P(st+1=s’ | st = s, at = a)

Policies and Values

Policy function (usually denoted as 𝜋): 𝜋(𝑎|𝑠) is the
probability of taking action a when currently in state s

Value function: Vπ(s) is the expected total return when
starting in state s and following policy 𝜋 thereafter

Bellman Equation: Dynamic Programming

Bellman Equation : Dynamic Programming

Expected
return (value)
of the current

state s

Maximum value of
any possible action a

Reward of
taking action a

at state s

Discount
Factor

Value of the next
state s’

Weight each of the possible next
state s’ by the probability of

ending up at that state

Brute Force Solution

• For each possible policy, sample returns while following it
• Choose the policy with the largest expected return

Brute Force Solution

• For each possible policy, sample returns while following it
• Choose the policy with the largest expected return

Issues:
• The number of policies can be large or infinite
• Variance of returns can be large, requiring large number of samples to

estimate the return of any given policy

Model-based vs Model-free RL

• Model-based: explicitly learn the transition
function P and the reward function R

• Model-free: learn a policy directly without
necessarily understanding the world via P
and R

Model-based RL: Value Iteration

Iteratively update the state-value function.

Repeat until convergence:

Act by choosing the best action in a state

Model-based RL: Value Iteration

Iteratively update the state-value function.

Repeat until convergence:

Act by choosing the best action in a state

Keep exploring the
environment while
updating the Value
function as you go

Model-based RL: Policy Iteration

Start with an arbitrary policy π, then iteratively update the policy.

Repeat until convergence (two-step process):

Act by sampling the policy

Model-based RL: Policy Iteration

Start with an arbitrary policy π, then iteratively update the policy.

Repeat until convergence (two-step process):

Act by sampling the policy

Keep Policy fixed and
update Value function
until it converges

Find the best actions
at each state using
one step lookahead

Model-free RL: Q-Learning

• Q(s, a) is the expected return starting at state s, taking action a, then
thereafter following policy 𝜋

• Best possible future return when performing action a in state s

• Q function is the Action-Value function for policy 𝜋

• In general: model-free RL involves predicting the value function of a certain
policy without having a concrete model of the environment

Q-learning

Compute Q function for all state-action pairs

After Q function is learned, act by selecting a for current state which has the highest Q value

Q-learning

We will see the specifics of how to implement
Q-learning in our final class coding notebook

We will see the specifics of how to implement
Q-learning in our final class coding notebook

(But it is literally just implementing the Q-learning equation and choosing the best action accordingly)

Fundamental tradeoff (not specific to Reinforcement
Learning): exploration vs. exploitation

• Exploration: sample the global search space; helps avoid local optima
• Exploitation: maximize with a promising local region of the search space to

fully optimize the solution

Epsilon (𝜀) Greedy Approach

• With probability 𝜀, select a random action
• With probability 1-𝜀, choose the best action
• 𝜀 is a hyperparameter which defines the

Exploration-Exploitation tradeoff

Modern Reinforcement Learning:
Deep Reinforcement Learning

Deep RL

Replace parts of the RL process with
DL

Deep RL
Representation matters!

https://wiki.pathmind.com/deep-reinforcement-learning https://medium.com/@vishnuvijayanpv/deep-reinforcement-
learning-value-functions-dqn-actor-critic-method-

backpropagation-through-83a277d8c38d

Deep Q-learning

https://www.analyticsvidhya.com/blog/2019/04/int
roduction-deep-q-learning-python/

Loss Function for a Q Network: Mean Square Error

2

“y_true” “y_pred”

Some cool examples of multiple interacting
neural networks for reinforcement learning

“World Models”: Predict how the environment
works and run simulations with that model

Kaiser et al. “Model-based reinforcement learning for Atari.” ICLR 2020.

“World Models” : Predict how the environment
works and run simulations with that model

Kaiser et al. “Model-based reinforcement learning for Atari.” ICLR 2020.

“Self Models”: agent can take actions that
result in the highest loss

Haber et al. “Learning to Play With Intrinsically-Motivated, Self-Aware Agents.” NeurIPS 2018.

Applications of Deep RL

Go game

Wikipedia

AlphaGO

Netflix

AlphaGO

AlphaGO

• Originally trained by observing historical games by Go experts
• Later, was trained to play against itself using separate instances of itself

• Wikipedia: “As of 2016, AlphaGo's algorithm uses a combination
of machine learning and tree search techniques, combined with extensive
training, both from human and computer play. It uses Monte Carlo tree
search, guided by a "value network" and a "policy network," both
implemented using deep neural network technology. A limited amount of
game-specific feature detection pre-processing (for example, to highlight
whether a move matches a nakade pattern) is applied to the input before it
is sent to the neural networks. The networks are convolutional neural
networks with 12 layers, trained by reinforcement learning.”

AlphaStar

Alpha Fold

• Can accurately predict 3D models of protein structures
• Has the potential to accelerate research in every field of biology

Implementing RL in Python

