
Reinforcement Learning
ICS/DATA 435 and ICS 635

Spring 2023



Reinforcement learning (RL)

https://towardsdatascience.com/reinforcement-learning-101-e24b50e1d292

Learning by experience (RL) vs learning by examples (supervised learning)



When is RL used?

• Autonomous vehicles (cars, spacecraft, aircraft, 
satellites, submarines, …)
• Robotics
• Recommender systems
• AI for gaming

• Usually as a “test bed” for more real-world ML
• Decision support (e.g., finance/trading)
• Artificial General Intelligence (AGI)

• Maybe one day



Components of an RL system

• Agent: the RL actor (robot, car, etc)
• States: all possible configurations of the 

agent
• Actions: the possible actions of the agent
• Reward: feedback from the environment
• Policy: function returning new state given 

the current state and an action
• Value: function returning quantification of 

reward in the future given the current state 
and an action

Wikipedia



Types of environments

• Fully Observable (Chess) vs. Partially Observable (Poker)

• Single Agent (Atari) vs. Multi Agent (Self-Driving Cars)

• Deterministic (Chess) vs. Stochastic (Self-Driving Cars)

• Discrete (Chess) vs. Continuous (Robotic Navigation)

Lex Fridman, MIT 6.S091: Introduction to Deep Reinforcement Learning



Self-driving cars

Agent:

States:

Actions:

Rewards:



Self-driving cars

Agent: the car

States: (Crash or No Crash, Lawful or Unlawful, distance from 
destination)

Actions: acceleration, deceleration, steering wheel angle 
change

Rewards: -10000 for Crash, +10 for No Crash, -100 for 
Unlawful, …



Targeted advertisement recommendation

Agent:

States:

Actions:

Rewards:



Targeted advertisement recommendation

Agent: the recommender system

States:

Actions:

Rewards:



Examples of Reinforcement Learning



Simple Games



Complex Games



Robotics



Including but not limited to Surgical Robotics



Autonomous Vehicles



“Classical” Reinforcement Learning



Ultimate goal: maximize reward

Future Reward:

Discounted Future Reward:

Lex Fridman, MIT 6.S091: Introduction to Deep Reinforcement Learning

Discount Factor: How much weight do we give to rewards in the future?
Higher γ à Incorporate more of the future reward



Rewards are defined by humans:
Demonstrative example

Lex Fridman, MIT 6.S091: Introduction to Deep Reinforcement Learning
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Rewards are defined by humans:
Demonstrative example

Lex Fridman, MIT 6.S091: Introduction to Deep Reinforcement Learning



Many types of RL methods

https://spinningup.openai.com/



Markov Decision Process (MDP)

(S, A, R, P)

S: states
A: actions
R: reward function, R(s, s’, a)
P: transition function, P(s, s’, a) = P(st+1=s’ | st = s, at = a)



Policies and Values

Policy function (usually denoted as 𝜋): 𝜋(𝑎|𝑠) is the 
probability of taking action a when currently in state s

Value function: Vπ(s) is the expected total return when 
starting in state s and following policy 𝜋 thereafter



Bellman Equation: Dynamic Programming



Bellman Equation : Dynamic Programming

Expected 
return (value) 
of the current 

state s

Maximum value of 
any possible action a

Reward of 
taking action a 

at state s

Discount 
Factor

Value of the next 
state s’

Weight each of the possible next 
state s’ by the probability of 

ending up at that state



Brute Force Solution

• For each possible policy, sample returns while following it
• Choose the policy with the largest expected return



Brute Force Solution

• For each possible policy, sample returns while following it
• Choose the policy with the largest expected return

Issues:
• The number of policies can be large or infinite
• Variance of returns can be large, requiring large number of samples to 

estimate the return of any given policy



Model-based vs Model-free RL

• Model-based: explicitly learn the transition 
function P and the reward function R

• Model-free: learn a policy directly without 
necessarily understanding the world via P 
and R



Model-based RL: Value Iteration

Iteratively update the state-value function.

Repeat until convergence:

Act by choosing the best action in a state



Model-based RL: Value Iteration

Iteratively update the state-value function.

Repeat until convergence:

Act by choosing the best action in a state

Keep exploring the 
environment while 
updating the Value 
function as you go



Model-based RL: Policy Iteration

Start with an arbitrary policy π, then iteratively update the policy.

Repeat until convergence (two-step process):

Act by sampling the policy



Model-based RL: Policy Iteration

Start with an arbitrary policy π, then iteratively update the policy.

Repeat until convergence (two-step process):

Act by sampling the policy

Keep Policy fixed and 
update Value function 
until it converges

Find the best actions 
at each state using 
one step lookahead



Model-free RL: Q-Learning

• Q(s, a) is the expected return starting at state s, taking action a, then 
thereafter following policy 𝜋

• Best possible future return when performing action a in state s

• Q function is the Action-Value function for policy 𝜋

• In general: model-free RL involves predicting the value function of a certain 
policy without having a concrete model of the environment



Q-learning

Compute Q function for all state-action pairs

After Q function is learned, act by selecting a for current state which has the highest Q value



Q-learning



We will see the specifics of how to implement 
Q-learning in our final class coding notebook



We will see the specifics of how to implement 
Q-learning in our final class coding notebook

(But it is literally just implementing the Q-learning equation and choosing the best action accordingly)



Fundamental tradeoff (not specific to Reinforcement 
Learning): exploration vs. exploitation

• Exploration: sample the global search space; helps avoid local optima
• Exploitation: maximize with a promising local region of the search space to 

fully optimize the solution



Epsilon (𝜀) Greedy Approach

• With probability 𝜀, select a random action
• With probability 1-𝜀, choose the best action
• 𝜀 is a hyperparameter which defines the 

Exploration-Exploitation tradeoff



Modern Reinforcement Learning:
Deep Reinforcement Learning



Deep RL

Replace parts of the RL process with 
DL



Deep RL
Representation matters!

https://wiki.pathmind.com/deep-reinforcement-learning https://medium.com/@vishnuvijayanpv/deep-reinforcement-
learning-value-functions-dqn-actor-critic-method-

backpropagation-through-83a277d8c38d



Deep Q-learning

https://www.analyticsvidhya.com/blog/2019/04/int
roduction-deep-q-learning-python/



Loss Function for a Q Network: Mean Square Error

2

“y_true” “y_pred”



Some cool examples of multiple interacting 
neural networks for reinforcement learning



“World Models”: Predict how the environment 
works and run simulations with that model

Kaiser et al. “Model-based reinforcement learning for Atari.” ICLR 2020.



“World Models” : Predict how the environment 
works and run simulations with that model

Kaiser et al. “Model-based reinforcement learning for Atari.” ICLR 2020.



“Self Models”: agent can take actions that 
result in the highest loss

Haber et al. “Learning to Play With Intrinsically-Motivated, Self-Aware Agents.” NeurIPS 2018.



Applications of Deep RL



Go game

Wikipedia



AlphaGO

Netflix



AlphaGO



AlphaGO

• Originally trained by observing historical games by Go experts
• Later, was trained to play against itself using separate instances of itself

• Wikipedia: “As of 2016,  AlphaGo's algorithm uses a combination 
of machine learning and tree search techniques, combined with extensive 
training, both from human and computer play. It uses Monte Carlo tree 
search, guided by a "value network" and a "policy network," both 
implemented using deep neural network technology.  A limited amount of 
game-specific feature detection pre-processing (for example, to highlight 
whether a move matches a nakade pattern) is applied to the input before it 
is sent to the neural networks. The networks are convolutional neural 
networks with 12 layers, trained by reinforcement learning.”



AlphaStar



Alpha Fold

• Can accurately predict 3D models of protein structures 
• Has the potential to accelerate research in every field of biology



Implementing RL in Python


