Day 3: Logistic Regression and Evaluation

Review: Linear Regression
Goal: Find line of best fit
How? Learn θ which minimize sq. error
How? Find θ which minimize MSE loss
How? Find $\min _{\theta} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}$

$$
=\min _{\theta} \frac{1}{n} \sum_{i=1}^{n} \operatorname{distance}\left(\hat{y}_{i}, \hat{y}_{i}\right)
$$

How? will cover later
First Classification model
Logistic Regression (LR)
Fr. hinaru classification, output the probability
that class $=1^{\prime}$
Class: different things you can predict in classification problems

Useful Properties of sigmoid function:

* output is between 0 and 1
(ie./ a puonviliy)
* Considence (probability) increases more quickly near the middle (i.e, when X is near 0 ant more slowly away from the moister Logistic Regression:

Learn optimal θ (i.e., m 's and b) for the function:

$$
y=S(m x+b)=\frac{1}{1+e^{-(m x+b)}}
$$

Or more generally:

$$
y=s\left(\theta_{0}+\theta_{1} x_{1}+\ldots+\theta_{n} x_{n}\right)=\overline{1+e^{-\left(\theta_{0}+\theta_{1} x_{1}+\ldots\right.}+\theta_{n} x_{1}}
$$

Optimization Goal:

Find $\min _{\theta} \frac{1}{n} \sum_{i=1}^{n} \operatorname{distance}\left(y_{i}, \tilde{y}_{i}\right)$

$$
=\min _{\theta} \frac{1}{n} \sum_{i=1}^{n} \operatorname{distance}\left(y_{i}, \frac{1}{1+e^{-\left(\theta_{0}+\theta_{1} x_{1}+\ldots+\theta_{n} x_{n}\right)}}\right)
$$

Example:

Lets say the
Learned model is:

$$
\begin{gathered}
y=s\left(\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}\right) \\
\theta=\left[\begin{array}{l}
\theta_{0} \\
\theta_{1} \\
\theta_{2}
\end{array}\right]=\left[\begin{array}{c}
-3 \\
1 \\
1
\end{array}\right]
\end{gathered}
$$

$$
\begin{array}{r}
\prod_{1}^{s}\left(\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}\right) \\
\cdots \cdots \cdots \cdots 1
\end{array}
$$

If decision boundory $=0.5 \mathrm{M} \begin{aligned} & \mathrm{set} \text { by } \\ & \mathrm{ML} \text { engineer }\end{aligned}$
(i.e., predict 1 is $\hat{y} \geq 0.5$, ot herwise pretict 0)

Predict " $y=1$ " if $-3+1 \cdot x_{1}+1 \cdot x_{2} \geq 0^{\downarrow}$ $\rightarrow x_{1}+x_{2}=3$ is the decision bountory

Example of Non-Linear Decision Bountary"

Learned model:

Predict " $y=1$ " is $-1+x_{1}^{2}+x_{2}^{2} \geq 0$ $\longrightarrow X_{1}^{2}+X_{2}^{2}=1$ is the decision bounary

Evaluating Supervised ML
Regression: MSE satissies the properties of a good loss function, and it's interpretable n incr- $\sqrt{M<E} \rightarrow$ Sometimes people prefer this so
K/VIフ ᄃ•V•・ール
that you have original data units

Classification：
Venn Diagram：

inside circle；$\hat{y}=1$
outside circle：$\hat{y}=0$

$$
\text { Accuracy }=\frac{T P+T N}{T P+T N+F P+F N}
$$

Problem: what is the accuracy here?

y	\hat{y}
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
1	

$\left(\begin{array}{c}0 \text { closisiscorion model is coles) } \\ \sigma \text { "classifier" }\end{array}\right.$ def classifier $\left(X_{1}, X_{2}\right)$.
return 0

Accuracy $=90 \%$

$$
\text { Precision : } \frac{T P}{T P+F P}=\frac{\text { correctly predicted positives }}{\text { predicted positives }}
$$

(Positive Predictive Value)

Recall

$$
: \frac{T P}{T P+F N}=\frac{\text { correctly predicted positives }}{\text { actual positives }}
$$

(Sensitivity)
Specificity: $\frac{T N}{T N+F P}=\frac{\text { correctly predicted negatives }}{\text { actual negatives }}$
Negative Predictive: $\frac{T N}{T N+F N}=\frac{\text { Correctly presicices negatives }}{\text { presicicted negatives }}$ TN
$\frac{\text { Confusion Matrix: }}{\hat{y}_{1}}$

Multi -Class Classification

Macro Averoging

$$
\begin{aligned}
& \left.\begin{array}{c}
0 \\
0 \\
0 \quad 1 \\
\hline 8 \\
\hline
\end{array} 10 \right\rvert\, 1 \quad 2 \quad \text { Precision } 0=8 /(8+10+1) \\
& \text { Precision, }=60 /(5+60+50) \\
& \text { Precision_ }_{2}=200 /(3+30+200) \\
& \text { Recall }_{0}=8 /(8+5+3)
\end{aligned}
$$

Overall Precision: Precision + Precision, + Precision 2

$$
=0.60
$$

Micro Averaging
"Pooled" Confusion matrix:

Overall precision $=\frac{268}{268+99}=0.73$

* In practice, people like Macro Averoging
because /VIicro swig ir the majority class

