Day 3: Logistic Regression and Evaluation

Review: Linear Regression Gool: Find line of best fit ... How? Learn & which minimize 59. error How? Find O which minimize MSE 1055 $M_{on}?$ Find $\min \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$ Φ $\min \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$ = min $\ln \sum_{i=1}^{n} distance (y_i, y_i)$ Θ How? will cover later First Classification Moder Logistic Regression (LR) Fr. hinny Classification, output the probability

10/ 0//// that Class = 1

Class: different things you can predict in Classification problems

(i.e., a promoving)
* Constituence (probability) increases m
near the middle (i.e., when is
and more slowly away from
Logistic Regression
Learn optimal
$$\Theta$$
 (i.e., M's a
the Sunction:
 $y = S(mx + b) = \frac{1}{1 + e^{-(mx)}}$
Dr more generally:
 $y = S(\theta_0 + \theta_1 X_1 + ... + \theta_n X_n) = 1 + e^{-(mx)}$

Optimization	bool.			
		~	Λ	١

Find min $\frac{1}{n} \geq distance(y_i, y_i)$ $= \min_{i \neq i} \frac{1}{n} \sum_{i=1}^{n} \text{distance}(y_i) + e^{-(\theta_0 + \theta_1 x_i + \dots + \theta_n x_n)}$ between 0 and model is, Say Lefis Zomple $\mathcal{Y} = S(\theta_0 + \theta_1 X_1 + \theta_2 X_2)$ $\overrightarrow{\theta}_{1} = \begin{bmatrix} \theta_{0} \\ \theta_{1} \\ \theta_{2} \end{bmatrix} = \begin{bmatrix} -5 \\ 1 \\ 1 \\ 1 \end{bmatrix}$ $\bigwedge S(\theta_0 + \theta_1 \chi_1 + \theta_2 \chi_2)$

Example of Non-Linear Decision Boundary?

KNIDE + VIIIst that you have orig

$$\begin{array}{c}
 Lassisication \\
 Venn Diagrami \\
 TP = true
 positive \\
 FP = Salse
 negative \\
 TN = true
 negative \\
 TN = true
 negative \\
 J = 1 \\
 J = 1 \\
 J = 0 \\
 inside circle; J = 1 \\
 atside circle: J = 0
\end{array}$$

ind data units

(Positive Predictive		
Volue) Recall (Sensitivity)	TP TP + FN	Correct h
(Sensitivity) Specificity:	N + FP	correctly production
Negative Predictive Value	TN TN + FN	- Correctwy predict

tual positives

Multi - Class Classification

Mouro Averoging

Recallo = 8/(8+5+3)

.