Day 9: Regularization and Probability

Overfitting Situations:
(1) using too mony inputs

(2) using a to complex of a moter

Modern ML (ie, deep learning) con learn

Regularization helps us constrain the model from doing roo well' that it Soils to generalization
$L 1$ Regularization add $\lambda \sum_{i=1}\left|W_{i}\right|$ to loss function
$L 2$ Regularization: add $\lambda \sum_{i=1}^{p} w_{i}^{2}$ to loss function
regularization term
For example: minimize MSE $+\lambda \sum_{i=1}^{p} W_{i}^{2}$
full loss function
with regularization
L regularization leads to feature selection remove inputs

$$
\theta_{1}
$$ from the model

Wu = some thing but for $L 2$

L2 leads to "dampened" or smaller model weights fur all features

Feature selection example
$x^{x_{2}} \geqslant$ of letters in name of pet

$$
M_{M}=\text { pet dog }
$$

$$
m \text { = per turtle }
$$

x_{1}
maximum speed
after feature selection, removing X_{2} (e.g., after L1 reguiorizotion)

$P(A)=$ "probability of event A "
$P(A \mid B)=$ "probobility of event A given event $B^{\prime \prime}$
$P(\bar{A})=\begin{gathered}\text { probability of event } A \text { not } \\ \text { occurring" }\end{gathered}$
Basic Rules:

* sum of probabilities in an event space $=1$
* $0 \leq P(x) \leq 1$
* $P(\bar{A})=1-P(A)$
ni) 1-D/तो

$$
\begin{aligned}
& r(H)=\perp r(H) \\
& P(A \text { or } B)=P(A)+P(B)
\end{aligned}
$$

if A and B are "mutually exclusive"

$$
* P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B)
$$

* $P(A$ and $B)=P(A) \cdot P(B \mid A)=P(B) \cdot P(A \mid B)$
* $P(A$ and $B)=P(A) \cdot P(B)$
is A and B are independent
* Bayes Rule:

$$
P(A \mid B)=\frac{P(A \text { and } B)}{P(B)}
$$

Naive Bayes Classification:

Probability Distributions
Normal Distribution ("Bell Curve")

$$
\begin{array}{ll}
n=0, & \sigma^{2}=0.2 \\
: u=0, & \sigma^{2}=1.0
\end{array}
$$

Probability Density Function (PDF):

$$
\begin{aligned}
& \text { Probability Density Function (PDF): } \\
& f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-u}{\sigma}\right)^{2}}
\end{aligned}
$$

(ugly equation, no need to memorize)
x : input
u, σ : parameters
PDF

$$
\begin{aligned}
&=\text { Ac of PD DF } \\
& \text { from } x=3 \\
& \text { to } x=5
\end{aligned}
$$

Bernoulli Distribution
Probability of "flipping a coin" with probability of heads P

Probability Mass Functions (PMF):

$$
f(x)=\left\{\begin{array}{lll}
p & \text { if } & y=1 \\
1-p \text { if } & y=0
\end{array}\right.
$$

for repeated coin tosses: $p^{y}(1-p)^{(1-y)}$

Example.
What's probability of H, H, T, H, T when flipping a coin with 60\% probability of heods?

$$
\begin{aligned}
& =0.6 \cdot 0.6 \cdot 0.4 \cdot 0.6 \cdot 0.4 \\
& =0.6^{3} \cdot 0.4^{2}
\end{aligned}
$$

Maximum Likelihood Estimation (MLE)
Likelihood:
$L(\theta \mid X)=\begin{array}{r}\text { "likelihood of model parameters } \theta \\ \text { giver the data } X "\end{array}$ giver the data $X^{\prime \prime}$

Example:
data:

are different parameterizations of the normal distribution (ie., are different U and σ values)

Assuming each dote point is independent from each other (the usual case), then:

$$
L\left(\theta \mid x_{1}, \ldots, x_{n}\right)=f\left(x_{1} \mid \theta\right) \cdot f\left(x_{2} \mid \theta\right) \cdot \ldots \cdot f\left(x_{n} \mid \theta\right)
$$

\uparrow

If you have many data points, then multiplying fractions repeated will underflow

$$
0.001 \times 0.001 \times \ldots
$$

Therefore, we take the $\log ^{0}$.

$$
\begin{aligned}
& {[\text { recall } \log (a b)=\log (a)+\log (b)]} \\
& \log L(\theta \mid x)=\log L\left(\theta \mid x_{1}\right)+\ldots+\log L\left(\theta \mid x_{n}\right)
\end{aligned}
$$

$\log (f(x))$ increoses/decreases the same as $f(x)$

Maximum Likelihood Estimation:-

$$
\begin{aligned}
& \frac{\partial L(\theta \mid x)}{\partial \theta}=\square\left\{\begin{array}{l}
\text { regular } \\
\text { calculus } \\
\text { optimization } \\
\text { problem }
\end{array}\right. \\
& \text { solve for } \theta
\end{aligned}
$$

Big Takeaway for Linear Regression:
Maximizing Likelihood $=$
Minimizing MSE
for linear regression

