SYMPATHETIC

Vascular effects
- α_1, β_1 ↑ BP, HR
- α_2 ↓ BP (CNS effect)
- α_1 Vasoconstriction
- α_1 ↓ perfusion of kidneys
- β_1............... ↑ AV conduction & contractility
- β_1 ↑ Renin release by kidney
- β_2 ↑ Perfusion of skel muscle
- α & β↓ Perfusion of GIT
- ↑ (shut) sphincter tone
- ↓ Digestion
- ↓ Motility & Bowel sounds

Lungs
- β_2.............. ↑ Efficiency, Resp. rate, BRONCHODILATION

Other
- α_1 Pupils dilate (Mydriasis)
- α_1 Contract bladder neck & urethra
- α_1 ↑ Piloerection
- α_1 ↓ Salivation, lacrimation
- α_1 Ejaculation in males
- β.............. ↓ Perfusion of GIT
- Directly relax bladder smooth muscle & indirectly ↓ parasympathetic tone
- β_1.............. Lipolysis ↑
- β_2............. ↑ Glycogenolysis in liver (making blood glucose ↑)
- β_2 Relaxation of uterine smooth muscle in females
- α_2 ↓ Insulin & ↑ Glucagon secretion from Pancreas
- α_2 ↓ Pain
- α_2 Sedation

Muscarinic
- ↑ Sweating

Nicotinic
- Adrenal medulla releases NE, E & cortisol into blood (↓ immune function, etc.)
- (SNS ganglionic synapse)

PARASYMPATHETIC

All MUSCARINIC RECEPTORS
- ↓ HR, contractility
- ↓ Atrioventricular (AV) node conduction
- ↑ Bronchoconstriction
- ↑ Secretions
 - Bronchial & nasal
 - Gut (including stomach acid)
 - Tears
 - Saliva secretion (copious, watery)
- ↑ Gut motility and relax sphincters
- ↑ Urinary bladder contractions
- ↓ Tone (relax) bladder sphincters
- ↑ Vasodilation for erection in males
- ↑ Gall bladder contractions
- ↑ Liver metabolism
- Pupils constrict (Miosis) and lens accommodation occurs (focusing)

SEX, SLEEP AND SANDWICHES

Miscellaneous other notes

In the parasympathetic nervous system, at the end organ, all the receptors are muscarinic and are GPCR.

In the Sympathetic nervous system, all the adrenergic and muscarinic receptors are GPCR. The adrenergic are primarily driven by NE, but can be activated by EPI (β_2) and, in some cases, DA.

All Muscarinic and Nicotinic receptors use ACh. All muscarinic receptors are GPCR; all nicotinic receptors are Ligand-gated ion channels.

Some ACh and NE receptors aren't enervated.

The adrenal gland, piloerector muscles, kidneys and sweat glands are enervated by the SNS.

See the following:
Comparison of Sympathetic and Parasympathetic Effects

http://itc.gsw.edu/faculty/gfisk/anim/autonomic.swf