Cardiovascular Drugs -1
Hypertension

PHRM 203
Allison Beale
Overview

❤ Lecture one
 • Heart basics www.texasheartinstitute.org/HIC/Anatomy/anatomy2.cfm
 • Hypertension

❤ Lecture two
 • Angina
 • Heart Failure
 • Anti-arrhythmics

❤ Lecture three
 • Anti-hyperlipidemics
 • Blood thinners and clotting agents
Heart Basics

♥ Heart Disease

- Coronary and Peripheral artery diseases
 - High BP (hypertension, HTN)
 - Angina - pain
 - Heart attack (myocardial infarction, MI) and Stroke - blockage leads to cardiac muscle or CNS death
 - Hyperlipidemia, etc.

- Heart Failure
 - Heart can not pump sufficient blood to maintain body functions
 - Congestive (CHF) - fluid fills pericardial sac and lungs

- Heart arrhythmias
 - Changes in heart beat
 - → heart disease, stroke, sudden cardiac arrest
Hypertension

-HTN = most common CV disease

- BP = systolic (contracting) / diastolic (filling)
- Normal BP = 115/75 (or ≤120/≤80 mmHg)
- Mild/Pre hypertension = 120-139/80-89
- Hypertension > 140/90; ↑risks
 - The 8th Joint National Committee (JNC) on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure defines hypertension as BP >140/90 OR on an antihypertensive medication.

- Prevalence varies - age, race, diet, gender
- ↑ incidence of renal failure, HF, stroke, CAD, PAD

- Usually asymptomatic until organ failure is imminent or has already occurred
Complications of HTN

- **Kidney failure**
 - 2nd most common cause after diabetes
- **Arteriosclerosis** (hardening of the arteries)
 - Atherosclerosis (plaque buildup in blood vessels)
- **Aortic aneurysms and dissections**
 - Thoracic
 - Abdominal
- **Heart failure** *(especially left side hypertrophy & failure)*
 - Coronary artery occlusion
 - Angina
 - Poor perfusion due to hypertrophy
- **Stroke**
- **Other end organ damage**
 - **Retinal damage** - Trouble with memory/learning
 - Epistaxis (nose bleed) - Metabolic syndrome
Defining HTN

• Measure BP using sphygomonanometer
 – No exercise, caffeine, smoking 1 hr before
 – Multiple measurements

• Blood pressure a continuum
 – ≥ 115/75 complications start
 • CV disease risk 2X each 20/10 rise
 – ≤140/90 goal for at risk patients
 • Chronic kidney failure
 • Diabetes
 • African Americans
 – Isolated systolic High BP (≥140/≤90)
 • “wide pulse pressure” in older adults 2-4X risk
Hypertension

❤️ “White coat” hi-BP versus true HTN

❤️ Life style modifications should be tried 1st and accompany any medication

- Dietary changes (e.g., DASH diet)
 - ↓ Na+, caffeine, alcohol; ↑K+, Ca++
- ↓ Weight
- ↑ Exercise
- ↓ Stress
- Quit smoking
DASH Diet

Dietary Approaches to Stop Hypertension

<table>
<thead>
<tr>
<th>Type of food</th>
<th>Number of servings for 1600-2000 calorie diet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grains and grain products (include at least 3 whole grains per day)</td>
<td>6 - 8</td>
</tr>
<tr>
<td>Fruits</td>
<td>4 - 5</td>
</tr>
<tr>
<td>Vegetables</td>
<td>4 - 5</td>
</tr>
<tr>
<td>Low Fat or Non Fat Dairy</td>
<td>2 - 3</td>
</tr>
<tr>
<td>Lean meats (like chicken or fish)</td>
<td>1.5 - 2</td>
</tr>
<tr>
<td>Nuts, seeds and legumes</td>
<td>3 - 5 per week</td>
</tr>
<tr>
<td>Fats and sweets</td>
<td>2</td>
</tr>
</tbody>
</table>

Summary

General Treatment Strategy for Hypertension

1. Diagnosis- 3- 6 independent measurements of BP.
2. Determination of primary vs. secondary hypertension.
3. If secondary, treat underlying pathology.
4. If primary, initiate lifestyle changes
 - smoking cessation
 - weight loss
 - diet
 - stress reduction
 - less alcohol
 - etc.

CRITICAL POINTS!
- Goal- normalize pressure- decrease CO and/or TPR
- Strategy- alter volume, cardiac and/or VSM function

Used with permission from S. Bealer, Dept. Pharm./Tox., University of Utah
Hypertension

2nd-ary Hypertension - cause is known (5% of cases)

- Hyperthyroidism
 - TH ↑BP
- Oral contraceptives
 - Estrogen ↑renin-angiotensin system → ↑BP
- Pheochromocytoma
 - Catecholamine (NE, DA, Epi) secreting adrenal tumor → ↑HR, BP, [Glucose]blood
- Coarctation of aorta
 - Congenital narrowing of aorta → ↑BP in head and arms; ↓BP everywhere else; ↑↑work for heart
- Cushing’s disease
 - Pituitary adenoma → xs ACTH → xs cortisol from adrenals
- Primary Aldosteronism
 - 1/8 of hiBP cases, Conn’s syndrome = benign adrenal tumor
- Renal artery constriction
Hypertension

♥ Primary or *Essential* HTN - cause **unknown** (95% of cases)

- Risk factors:
 - Age
 - Hyperlipidemia - LDL >160 mg/dL (in normal person, this is high)
 - Diabetes and metabolic syndrome
 - Genetics (family history, sex, race)
 - Weight
 - Diet, including overuse of salt (≥ 5.8 gm/day) and types of fats
 - Smoking
 - Stress & stress management
 - Exercise (lack of)
 - Chronic inflammation (elevated "C reactive protein" levels)

- The **vast majority** of essential HTN patients have one thing in common:
 - **Arteriosclerosis** (hardening) of the arterioles
How the body regulates BP

- Nervous system
 - Medulla
 - Hypothalamus and Posterior Pituitary gland
- Vascular Autocoid Production
 - Endothelium
 - Mast cells
 - Platelets
- Kidney
- Adrenal gland
How the body regulates BP

1. Nervous system
 – Medulla (Ventral Surface of the Medulla, VSM)
 • Controls sympathetic and parasympathetic outflow (HR, conduction, contractility, vasoconstriction)
 • Baroreceptors in carotid arteries provide feedback
 – Hypothalamus and Posterior Pituitary gland
 • Antidiuretic hormone (vasopressin, ADH) → water retention and vasoconstriction (synthesis/release stimulated by AngII)
 • Adrenocorticotropic hormone (ACTH) → cortisol release

2. Vascular Autocoid Production

3. Kidney

4. Adrenal gland
 \text{ADH release triggered by: Hypotension (baroreceptors),} \
 \text{↑ osmolarity &/or ↑ ANG II (stimulate receptors on hypothalamus),} \
 \text{↑ sympathetic stimulation}
How the body regulates BP

1. Nervous system

2. Vascular Autocoid Production
 - Endothelium
 • Endothelin \rightarrow vasoconstriction
 • NO, EDHF (endothelium-derived hyperpolarizing factor) \rightarrow vasodilation
 • Prostacyclin (PGI$_2$) \rightarrow vasodilation (antagonist to TXA$_2$)
 - Mast cells
 • Histamine \rightarrow vasodilation
 - Platelets
 • Serotonin, ATP/ADP, Ca$^{++}$, Thromboxanes (TX’s) \rightarrow vasoconstriction
 - Plasma proteins
 • Kinins \rightarrow vasodilation (antagonist to AngII)

3. Kidney
4. Adrenal gland
How the body regulates BP

1. Nervous system
2. Vascular Autocoid Production
3. Kidney
 - Renin - Angiotensin II → vasoconstriction
 - Ang II → release of growth factors (e.g., vascular endothelial growth factor, VEGF)
 - ↑ # & size (proliferation and hypertrophy) of vascular smooth muscle cells
 » ↑ vascular tone → ↑BP
 - Fibrotic Δ’s (scaring) → ↑BP
 - Ang II → release of ADH & Aldosterone
 - Ang II → stimulates the sympathetic nervous system
4. Adrenal gland
How the body regulates BP

1. Nervous system
2. Vascular Autocoid Production
3. Kidney

4. Adrenal gland
 - Aldosterone → water retention in kidney → ↑ blood volume → ↑ BP
 - Cortisol → Sensitizes vascular smooth muscle to NE/EPI and acts as a diuretic → ↑ BP
 - Catecholamines → ↑ HR, contractility, conduction, vasoconstriction → ↑ BP
 - Progesterone is a potent inhibitor of the aldosterone receptor
 • Just before ovulation occurs, progesterone levels drop dramatically and an aldosterone rebound occurs contributing to PMS-related edema.
How the body regulates BP

- Nervous system
 - Medulla
 - Controls sympathetic and parasympathetic outflow (HR, Conduction, Contraction)
 - Baroreceptors in carotid arteries provide feedback
 - Hypothalamus and Posterior Pituitary gland
 - Antidiuretic hormone (vasopressin) → water retention and vasoconstriction
 - ACTH → cortisol release → ↑ BP

- Vascular Autocoid Production
 - Endothelium
 - Endothelin → vasoconstriction
 - NO, EDHF → vasodilation
 - Prostacyclin (PGI\textsubscript{2}) → vasodilation (antagonist to TXA\textsubscript{2})
 - Mast cells
 - Histamine → vasodilation
 - Platelets
 - Serotonin, ATP/ADP, Ca++, Thromboxanes → vasoconstriction

- Kidney
 - Renin - Angiotensin II → vasoconstriction

- Adrenal gland
 - Aldosterone → water retention in kidney → ↑ blood volume → ↑ BP
 - Cortisol → Sensitizes vascular smooth muscle to NE/EPI, causes diuresis → ↑ BP
 - Catecholamines → ↑ HR, contractility, conduction, vasoconstriction → ↑ BP
Looking at some important mechanisms in the control of blood pressure

See handouts for key
“Taking medication for HTN”

• HTN = silent disease
 – You probably feel fine

• Lifetime commitment to taking meds
 – You won’t feel fine anymore

♡ Lots of causes, lots of meds in lots of classes

♡ Lots of errors: ADRs, Medicare, 2006
 ✃ Essential hypertension 28% of ADRs in 8.2M patients
 ✃ 2/3 of HTN patients on up to FIVE different drugs for HTN
Hypertension

“4” sites to pharmacologically regulate BP

1. Medulla (origin of sympathetic & parasympathetic outflow)
2. Blood Vessels
 - Resistance vessels (arterioles)
 - Capacitance blood vessels (venules)
3. Heart variables (pump output)
 - Rate = Chronotropy
 - Contractility = Inotropy
 - Conduction = Dromotropy
 - Relaxation = Lusitropy
4. Kidney variables (blood volume)
 - Water
 - Electrolytes
Classes of Antihypertensive Agents

1. Diuretics
2. Vasodilators
 - Calcium Channel Blockers
 - Other vasodilators
3. Anti-angiotensin II Drugs
 - ACE inhibitors, A2 receptor blockers or Direct Renin Inhibitors
4. β-Adrenergic Antagonists (β-Blockers)
5. Central Sympatholytics (α-2 agonists)
6. Peripheral α-1 Adrenergic Antagonists

CRITICAL POINTS!
1. Each designed for specific control system
2. Often used in combination
Antihypertensive Drugs

♥ Diuretics
• Thiazide-type
• Loop
• K⁺ sparing

♥ Sympatholytic drugs
• Peripheral α adrenergic antagonists
• CNS α₂ agonists ❧
• β Adrenergic antagonists (β Blockers) ❧

♥ Angiotension inhibitors
• ACE inhibitors (ACE-I) ❧
• Angiotensin receptor antagonists (ARBs)
• Direct Renin Inhibitors (DRIs)

♥ Vasodilators
♥ Calcium channel blockers (CCBs) ❧
♥ Other vasodilators

♫ = cardio-inhibitory drugs → ❏ cardiac remodeling
1st choice Antihypertensive Drugs: **Diuretics**

♥ 1st course of treatment

♥ Reduce blood volume & affect smooth muscle tone

♥ Types: Thiazide, Loop, and K+ sparing

• Diuretics trigger renin release, control with ACEI or ARB
1st choice Antihypertensive Drugs: Diuretics

Thiazide-type

- **Hydrochlorothiazide (Esidrix)**

 - **Indications**
 - Mild/moderate HTN and edema (of various types)

 - **ADRs**
 - Hypokalemia, pancreatitis, kidney failure, blood dyscrasias, respiratory distress, nausea (take with food to reduce), orthostatic hypotension, cross allergic reaction with other sulfonamides
 - May ↑ blood glucose, cholesterol, triglyceride, Ca^{++}, and uric acid levels

Avoid >25mg/day in the elderly
1st choice Antihypertensive Drugs:
Diuretics

- **Loop Diuretics**
 - Furosemide (Lasix®)
 - **Indications**
 - Edema associated with severe HTN, HF (CHF), renal insufficiency, etc.
 - **ADRs**
 - May cause deafness, use lowest possible dose. Inject slowly
 - Electrolyte imbalance and dehydration, yellow vision, cross allergic reaction with sulfonamides, ↑ blood glucose, gout, pancreatitis, blood dyscrasias
 - **Incompatibilities**
 - NSAIDS & ACEI → renal failure
 - Milrinone, diltiazem, Cipro, labetalol, etc, pH <7.0 → ppt

PO, IV/IM
1st choice Antihypertensive Drugs:

Diuretics

- **K⁺ sparing**
 - **Spironolactone 🏥 ⚫ C (Aldactone)**
 - **Indications**
 - Moderate HTN, CHF, edema
 - 1^o aldosteronism
 - ⊗ aldosterone receptors
 - **ADRs**
 - Hyperkalemia, arrhythmias, gynecomastia (anti-androgen effects), gastric bleeding
 - Avoid K⁺ rich foods and K⁺ supplements
 - Citrus, bananas, dates, apricots, prunes, raisins, beets, spinach, beans, tomatoes, turkey, fish, beef

Boxed warning (S): tumorigenic, not for initial therapy

Don’t give with ACEI or ARBs

Others: amiloride and triamterene

A Beale

PHRM 203 - CV drugs 1 26
1st choice Antihypertensive Drugs:
Diuretics used in surgery

❤️ Osmotic diuretics

- H₂O soluble non-electrolytes, freely filtered & poorly reabsorbed

- Common IV drip additive during trauma treatment or surgery - lots of blood loss may lead to renal infarction secondary to renal artery constriction.

- Example
 - Mannitol (Osmitrol)
2nd choice Antihypertensive Drugs: **Vasodilators**

♥ Vasodilators tend to cause greater compensation feedback than sympatholytics & are often combined with a diuretic

Ca++ **channel blockers** (CCB) ♥

Amlodipine (Norvasc) 🌴
- Indications
 - HTN & Angina (chronic stable and Prinzmetal’s) **PO**

Diltiazem (Tiazac, Cardizem) 🌴
- Indications
 - HTN & chronic stable & Prinzmetal’s angina **PO, IV**

Verapamil (Covera HS) 🌴 🏵️ C
- Indications
 - Slow IV – conversion of tachycardias; atrial fibrillation/flutter
 - PO – HTN, angina, arrhythmias **PO, IV**
3rd choice Antihypertensive Drugs:
Angiotensin inhibitors

- **ACE inhibitors** 👣 ⚖️ C/D

- Benazepril (Lotensin) 🎌, captopril (Capoten) 🎌, enalapril (Vasotec) 🎌, fosinopril, lisinopril, moexipril

 - ADRs - hypotension, DRY COUGH, hyperkalemia, kidney damage (especially with NSAID & diuretic), angioedema

 - Indications

 - **B** – HTN
 - **C** – HTN, HF, Lf vent dysfunction after MI, diabetic nephropathy
 - **E** – same as captopril

ACEI ↑hypoglycemic effects of sulfonylurea drugs e.g., glyburide

Boxed warning for all ACEI, ARBs & DRIs: fetotoxicity!!

C – may cause blood dyscrasias
3rd choice Antihypertensive Drugs: \textit{Angiotensin inhibitors}

- **Angiotensin receptor antagonists** C/D
 - Irbesartan (Avapro), Losartan (Cozaar), Valsartan (Diovan)

- **Indications**
 - \textbf{I} – HTN & diabetic nephropathy in DMT2
 - \textbf{L} – HTN, Lf vent. Hypertrophy, diabetic nephropathy
 - \textbf{V} – HTN, HF, MI

- **ADRs**
 - Significant orthostatic hypotension, anaphylactoid reactions including angioedema

\textit{Boxed warning for all ACEI, ARBs & DRIs: fetotoxicity!!}
3rd choice Antihypertensive Drugs:
Angiotensin inhibitors

- **Direct Renin Inhibitor (DRI)**
 - **Aliskiren (Tekturna)**
 - C/D

- **Indications**
 - HTN

- **ADRs & other info**
 - Significant orthostatic hypotension, anaphylactoid reactions including angioedema or SJS, hyperkalemia, peripheral edema. High doses dramatically increase risk of diarrhea.
 - In diabetics or in patients with GFR <60 ml/min, do NOT use in combo with ARBs or ACEIs.
 - Do NOT take with fatty food – establish a routine for taking it.

- **Boxed warning for all ACEI, ARBs & DRIs: fetotoxicity!!**
4th choice Antihypertensive Drugs: Vasodilators

- **Hydralazine (Apresoline)** ![Switzerland] ![Hospital] C
 - PO – HTN
 - Inj – Severe HTN
 - May cause a syndrome like lupus erythematosus

- **Nitroprusside (Nitropress)** ![Switzerland] ![Hospital] C
 - **Indications**
 - To induce an immediate BP drop
 - Acute congestive HF
 - To induce hypotension to reduce blood loss in surgery
 - **Boxed warnings:**
 1. must be diluted
 2. May cause precipitous BP drop
 3. May cause fatal cyanosis if used >10 min or high infusion rate

PO, IV, IM
IV infusion after dilution

Not used alone
“Last” choice Antihypertensive Drugs: \(\beta \) blockers

\(\heartsuit \beta \) adrenergic receptor antagonists

- \(\downarrow \) BP by direct cardio effects: \(\downarrow \) HR and contractility (\(\Theta \) chronotropic and inotropic)
- \(\times \) Renin secretion \(\rightarrow \) \(\downarrow \) angiotensin II \(\rightarrow \) \(\times \) aldosterone
- \(\downarrow \) CNS sympathetic outflow

- **\(\beta_1 \) selective**
 - Atenolol, betaxolol, bisoprolol, esmolol, metoprolol (Lopressor, Toprol)
 - PO, IV

- **Nonselective \(\beta \) blockers**
 - Propranolol (Inderal) \(\heartsuit \), nadolol, pindolol, timolol
“Last” choice Antihypertensive Drugs: Sympatholytic drugs

α₁ adrenergic receptor antagonists

- Not used as much as β blockers
- Selective α₁ blockers

- **PO**
 - Doxazosin (Cardura), prazosin (Minipress), terazosin (Hytrin)
 - Block sympathetic arteriolar contraction
 - ADRs = orthostatic hypotension, fainting (1st dose syncope)

General adrenergic inhibitors

- Guanadrel (Hylorel)
 - Believed to displace NE from vesicles
- Guanethidin (Ismelin)
 - Blocks NE release
- Labetalol (Normodyne) and Carvedilol (Coreg)
 - α₁ and β non-selective receptor blocker

Okay for mild HTN, causes edema
"Last" choice Antihypertensive Drugs: Last ditch effort

📍Central agonists *(still sympatholytic!)*

📍 ↑ inhibitory CNS α_2-adrenergic receptors which ↓ sympathetic tone (outflow)
📍 α_2-adrenergic agonists can be blocked by TCAs
📍 Cause ↓ Cardiac Output by:
 - ↓ HR → Θ Chronotropic
 - ↓ Contractility → Θ Inotropic

– Methyl dopa (Aldomet®) 🍀 ☯ B PO/IV
 - Indication: HTN
 - ADR: may cause +Coombs test, hemolytic anemia, liver failure

– Clonidine (Catapres®) 🍀 ☯ C ☯ PO/Inj/Soln/Patch
 - Others, Guanabenz (Wytensin®) and Guanfacine (Tenex®)
 - Indications: HTN; with opiates for severe pain (epidural)
 - Discontinuation syndrome

Associated with:
- Sedation
- Depression
- Constipation & dry mouth
- Sexual dysfunction
- Sodium retention
“Last” choice Antihypertensive Drugs: Last ditch effort

- Peripheral DA (D₁) agonist
 - Fenoldopam (Corlopam)
 - D₁ receptors in kidney, heart & mesentary → vasodilation
 - Indication
 - Short term (up to 48 hours in adults and 4 hours in kids) management of HTN
 - ADRs - reflex tachycardia, hypotension, ↑intraocular pressure. Contains sodium metabisulfite (may cause allergic reactions especially in asthmatics)
 - IV infusion
Typical Fixed-Combination Drugs

<table>
<thead>
<tr>
<th>Trade name</th>
<th>Generic name combo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capozide</td>
<td>Hydrochlorothiazide with captopril</td>
</tr>
<tr>
<td>Combipres</td>
<td>Chlorthalidone with clonidine</td>
</tr>
<tr>
<td>Hyzaar</td>
<td>Losartan with hydrochlorothiazide 📌 📌 C/D</td>
</tr>
<tr>
<td>Inderide</td>
<td>Hydrochlorothiazide with propranolol 📌</td>
</tr>
<tr>
<td>Lotrel</td>
<td>Amlodipine with benazepril 📌 📌 C/D</td>
</tr>
<tr>
<td>Monopril-HCT</td>
<td>Fosinopril with hydrochlorothiazide</td>
</tr>
<tr>
<td>Teczem ER Tablets</td>
<td>Enalapril with diltiazem</td>
</tr>
</tbody>
</table>

Drugs in italics have been covered before
Hypertension

Course of treatment

❤ Mild hypertension BP 120-139/80-89

❤ Lifestyle changes
 • Weight reduction
 ◆ Men 36” (Asian) - 40” waist
 ◆ Women 32” (Asian) - 35” waist
 • ↑ Exercise levels
 ◆ 30 - 60 minutes/day on most days
 • Diet changes
 ◆ DASH if possible
 ◆ Avoid alcohol, Na+
 • Avoid tobacco, quit smoking
 • Reduce stress

Treating hypertension in someone <65 yrs

• If lifestyle changes don’t decrease HT enough:
 Diuretics
 CCBs

• Lowest possible dose PO SID

• If not <140/90, or ADR too much, then add another drug or replace initial choice
Hypertension

Courses of treatment

♥ Treating HTN in Diabetics
- Treatment usually starts at lower BP (130/80)
- Mild HTN recommendations 1st
 - Lifestyle changes
 - Weight
 - Exercise
 - Diet, DASH if possible
 - Quit smoking
 - Reduce stress
- If lifestyle changes don’t decrease HTN enough:
 1. ACE inhibitors
 2. Angiotensin receptor blockers (ARBs)

♥ In the Elderly
- Mild HTN rec.s 1st
- Diuretics - preferred
- CCBs
- Extreme care regarding multiple meds

♥ In those with heart disease history
- Mild HTN rec.s 1st
- ACE inhibitors
- Diuretics
- β blockers
- Usually given in combo formulations
Hypertension
Course of treatment

❤ HTN in pregnant women
• Mild hypertension recommendations first
• Careful monitoring before and after using meds
• Drugs of choice
 • Labetolol (Normodyne or Trandate) is 1st – mixed alpha/beta blocker
 • Methyl dopa (Aldomet) - central α_2 - agonist
 (these are inhibitory neurons in the CNS)
• Extreme care regarding teratogenic potential of:
 • ACEI
 • Angiotensin II receptor inhibitors (ARBs)
 • Direct Renin Inhibitors

ACEI-related teratogenesis most likely related to a lack of amniotic fluid which leads to growth retardation – including lack of lung development, hypocalvarium, joint contractures, hypotension and death