Cardiovascular Drugs - 2

Angina, Heart Failure, Arrhythmias

PHRM 203
Allison Beale
Overview

- Angina
 - Typical
 - Variant
 - Unstable
- Heart Failure
- Antiarrhythmics
Ischemic Heart Disease: *Angina*

- The heart doesn’t receive enough O_2 to function properly
- **Two forms of ischemic HD**
 - **Acute**
 - Myocardial infarction (MI)
 - Usually due to thrombosis (clot inside a blood vessel)
 - **Chronic**
 - Angina pectoris (typical or stable, unstable and variant)
 - ↓ blood supply due to coronary atherosclerosis (plaques in coronary arteries)
 - MI is in the future
Typical Angina

- AKA: “Classic,” “stable,” or “effort”
 - Pain follows effort or stress
 - No pain at rest
 - Coronary atherosclerosis present

Treat with Nitroglycerin, β blocker or pFOX Θ’r

Resting Exercise Resting Exercise

Coronary artery

Arteriole

O₂ demand Blood flow

+ + ++ +
++ +
++ +
++ +
++ +
Variant angina

- AKA: Prinzmetal’s angina
 - Pain at rest due to *coronary vasospasm*
 - Large coronary arteries spasm for unknown reason
 - May be a problem with the endothelium not releasing Nitric oxide (NO) in response to Vagal stimulation
 - Circulating vasoactive substances?
 - Autocoids?
 - Hormones?

Treat with CCB or Amyl nitrate
Unstable angina

- Pain at **rest and with exertion**
- **MI eminent**
 - Thrombus forming at atheroma
 - Atheroma = build up of fat, Ca$^{++}$, and cells in the intima, start of atherosclerosis.
 - Occlusion of artery is complete and causes pain at rest
 - As thrombus is broken down, pain subsides
 - Pain on exertion for same reason as stable a.
 - If the thrombus lingers, MI due to ischemia

Treat with CCB
Typical angina therapy

• Goal = ↓ myocardial O$_2$ demand

1. ↓ Preload (factors stressing - stretching - myocardium at end of diastole)
 – Nitrovasodilators

2. ↓ Myocardial contractility
 – β-blockers (- ionotrope)

3. ↓ Afterload (factors stressing myocardium at the end of systole)
 – Ca$^{++}$ channel blockers (- ionotrope)

4. ↓ Fatty acids as energy source (it takes less O$_2$ to metabolize glucose)
 – pFOX inhibitors
Antianginal Drugs: Vasodilators

♥ Nitrites and nitrates
 • Amyl nitrite
 • Acute Angina and Prinzmetal’s
 • Cyanide poisoning
 Nitroglycerin (Nitro-Bid) & Isosorbide dinitrate
 • Typical Angina or MI
 • Prodrugs that release nitric oxide (NO)
 • Mostly venous vasodilation
 • Pharmacodynamic tolerance to vasodilation effects
 • ADRs: SEVERE headache & hypotension, tachycardia, flushing

⚠ Warning ⚠ don’t take with PDE-5 θ’s like sildenafil!

Light sensitive

Nitro-Bid t ½ ~3 min.
ISDN t ½ ~5 hrs.
Nitroglycerin notes

- Tolerance controlled by keeping 10-12 hour gap between doses
- Lots of formulations
 - Transdermal patch and topical ointment must be applied to non-hairy skin (NOT hands or feet)
 - May still be toxic when “spent”
 - Transdermal patch has aluminum backing
 - Remove patch before defibrillation to avoid damage and burns from arcing

Nitroglycerin is absorbed into the PVC of IV sets, this ↓s dose up to 80%!

Paste may be mistaken for hand cream!

Capsules may be broken and waved under the nose
Antianginal Drugs:
Ca\(^{++}\) channel blockers

❤ Several unrelated classes

- **Dihydropyridines - smooth muscle selective**
 - Amlodipine (Norvasc)
 - Felodipine (Plendil\(^\circledR\)), Isradipine, Nicardipine, Nifedipine and Nimodipine

- **Benzothiazepine - mixed smooth and cardiac**
 - Diltiazem (Cardizem, Tiazac)

- **Myocardium specific L-type channel blockers**
 - Verapamil (Covera)

Verelan \(\&\) Vivarin (caffeine), Voltaren (diclofenac), Virilon (methyltestosterone)

CCBs must be individually titrated to correct dose

Amiloride (\(K^+\) sparing diuretic)
Cardene (a different CCB)
P450↓
Antianginal Drugs: Calcium Channel Blockers (CCB)

ADRs include:

- Amlodipine PO – HT, angina
 - Edema, palpitations, fatigue, dizziness, flushing, headache
- Diltiazem PO/IV – angina, HT
 - Headaches, edema, dizziness, bradycardia, dyspnea
- Verapamil PO/IV – HT, angina, arrhythmias
 - Arrhythmias, dizziness, headache, exfoliative rash, edema, dyspnea, dark urine, clay-colored stools, jaundice, constipation

Note: Diltiazem & verapamil are substrates of P-GP & P450’s
Amlodipine
• Angina or MI may worsen at start of therapy
 – Use nitrate to control

Verapamil
• Lots of drug interactions
 – ↑β-blocker effects
 – IV slowly

CCB Notes

Diltiazem
• Often 2 weeks before effects are seen
• Incompatible with furosemide (ppt)
• Lots of drug interactions
 – ↑CNS depression of sedative hypnotics and anesthetics
Antianginal Drugs:

β-adrenergic blockers

- Prophylactic for Typical angina & acute MI

- Atenolol (Tenormin)
- Metoprolol (Lopressor, Toprol)
- Nadolol
- Propranolol (Inderal) c

Drugs that ↓ myocardial contractility (& thus, workload) are called **inotropes**

Examples of **inotropes** include: β-blockers, CCBs and certain anti-arrhythmics (e.g., quinidine, procainamide, disopyramide, flecainide)

β blockers must be individually titrated to correct dose NEVER suddenly discontinue!
Antianginal Drugs:
pFOX inhibitors, etc.

❤ pFOX inhibitors

- Partial fatty acid oxidation inhibitors
 - Used to treat *Chronic stable angina*
 - Heart gets bulk of energy from fatty acid oxidation
 - Blocks FAO, improving glucose use which decreases O₂ demand

- **Trimetazidine (Vastarel)** ☺ NOT FDA APPROVED YET (☺ Vistaril = hydroxyzine)
 - No reported drug interactions

- **Ranolazine (Ranexa)** ☭
 - Affects Na⁺- dependent Ca²⁺ channels which may cause “Long QT syndrome”
 - Indirectly prevents XS Ca²⁺ that causes cardiac ischemia
 - Metabolized by CYP3A
 - Lots of drug interactions
Heart Failure

• Acute versus Chronic

• Congestive heart failure
 – Edema
 • Ankles/feet
 • Legs
 • Lungs (if recumbent)
 • Eventually, the abdomen (ascites)

Ambulance Meds
• Adenosine
• Atropine
• Aspirin
• Albuterol
• Diphenhydramine
• Dopamine
• Epinephrine
• Furosemide
• Glucagon
• Lidocaine
• Midazolam
• Morphine
• Naloxone
• Nitroglycerine
• Sodium bicarbonate
Heart Failure Risk Factors

- Pre-existing heart disease
 - CAD, HT, valve disease, cardiomyopathy
- Family history of HD
- Diabetes
- Obesity
- Alcoholism or drug abuse
- Excessive sodium intake
- Sustained rapid heart rate (tachycardia)
- Lung disease such as COPD
- Anemia
- Kidney disease
Heart Failure

• Multiple CV disorders → HF
 – CHF = #1 dischg Dx (ER) for >60yr olds
 • LV failure presents with shortness of breath
 • RV failure presents with fluid accumulation
 – Outpatient meds
 – www.heartfailure.org/eng_site/treatinghf_med_op.asp
 – Inpatient meds
 – www.heartfailure.org/eng_site/treatinghf_med_ip.asp
Treatment of Heart Failure

• Acute (acute decompensated HF, ADHF)
 – IV

 ▶ Diuretics
 - Furosemide (Lasix) ▶ C

 ▶ Vasodilators
 - Nitroglycerin (Nitrostat, Nitro-Bid) ▶ C, nitroprusside

 + Inotropic agents
 - β agonists
 - Dobutamine (Dobutrex) ▶ B, dopamine
 - Phosphodiesterase-3 inhibitor
 - Milrinone (Primacor) ▶ C

 ▶ Natriuretic peptide
 - Nesiritide (Natrecor) ▶ C

Lasix can’t be given in same IV as Primacor as combo will form a PPT

Atrial Natriuric Peptide is a potent *vasodilator* secreted by myocardium, triggered by AngII, HT, Endothelin, ↑ Na+ and β-receptor stimulation
Treatment of Acute HF

• **Diuretic resistance**
 – Neurohormonal activation
 – Rebound Na+ uptake following water loss
 – Hypertrophy of distal nephron
 – ↓ tubular secretion
 – ↓ renal perfusion
 – Altered absorption of diuretic
 – Patient noncompliance

• **Managing resistance**
 – Combo: furosemide + thiazide/sprinolactone,….
 – Add dopamine to increase cardiac output
 – ↓ ACE-I

1/3 of patients experience resistance: diuretic effects cease before edema resolved

More common in moderate to severe HF, especially in those taking NSAIDs or with diet high in Na+
Treatment of Chronic Heart Failure

- Diuretics
- Digitalis
- Anticoagulants
- Cholesterol lowering medications
- Vasodilators
 - Direct acting vasodilators
 - α or β blockers (cardio⊕)
 - Nitrodilators
 - Aldosterone blockers

- Vasodilators, continued
 - ACEI
 - ARBs
 - Ca^{++} channel blockers
 - α or β agonists (cardio⊕)
 - CNS α agonists (cardio⊖)
 - Ganglion blockers
 - Endothelin receptor ⊗
 - Renin ⊗’s
 - Phosphodiesterase⊖’s
 - Potassium channel openers

Avoid NSAIDS which can worsen CHF
Arrhythmias

• Normal heart rhythm
 – Sinoatrial (SA) node
 • Pacemaker
 • Modified myocardial cells that self-depolarize at 60-100/min
 – Innervated by PSNS and SNS
 • Initiates electrical signal and pace of heart
 – Atrioventricular (AV) node
 • At base of right atrium, receives signal from SA
 • Acts as a “Gatekeeper,” limiting signal frequency
 – Also innervated by PSNS and SNS
 – Bundle of HIS
 • Carries signal to ventricles and left atrium

PSNS - Direct HR control only (SA & AV nodes)
SNS - HR & contractility control (SA & AV nodes + myocardium)
Arrhythmias

• An abnormal rate or rhythm of HR
• Classified by speed (fast/slow) & location (atria/ventricles)
• Symptoms include:
 – Syncope or lightheadedness
 – Palpitations
 – Angina or chest pain
• Causes
 – Coronary ischemia or other injury (e.g., surgery)
 – Electrolyte balance problems
 – Over activity of the sympathetic nervous system
 – Drugs, including general anesthetics, that alter transmembrane potentials/characteristics → abnormal formation or conductance of action potentials
Risk factors for arrhythmias

- Age
- Genetics
- CAD, previous heart surgery and other heart disease
- Thyroid problems
- Drugs
 - OTC sympathomimetics like pseudoephedrine
- HT
- Obesity
- Diabetes
- Obstructive sleep apnea
- Electrolyte imbalance
- Alcohol
 - “Holiday Heart” AF
- Stimulants
 - Caffeine & nicotine

Also digoxin & TCAs for PVCs
Types of arrhythmias
Tachycardia

- Atrial
 - Fibrillation
 - Flutter
 - Supraventricular tachycardia
 - Wolff-Parkinson-White syndrome

- Ventricular
 - Tachycardia
 - Fibrillation
 - Long QT syndrome

Affects 1-2% of adults, ↓ cardiac output by 20-50%

By far, the most important cause of sudden cardiac death

Drugs that ↑ HR are called ☀ chronotropic agents

Electrical remodeling: repeated AF ↑ likelihood of another AF lasting longer
Types of arrhythmias
Bradycardia and Premature beats

• Bradycardia
 – Sick Sinus syndrome
 – Conduction block

• Premature heartbeat
 – Ventricular
 – Atrial

Drugs that ↓HR are called Θ chronotropic agents

Premature ventricular contractions (PVC) – the ventricles are initiating HR – are common. They are perceived as a “missed beat.”
Treatment for arrhythmias

• Bradycardia
 – Treat primary cause e.g., hypothyroidism
 – Pacemaker implant

Note: Anti-arrhythmic drugs treat tachyarrhythmias

Two mandates of AF treatment:
1. Control ventricle rate
2. Adequate anticoagulants

• Tachycardias
 – Vagal maneuvers
 • Valsalva
 • Carotid sinus massage
 – Medications (atrial)
 • Anti-arrhythmics
 • Anticoagulants
 – Cardioversion
 • DC Electroshock
 – Cardiac ablation
 • Kill tissue to cause electrical block
Antiarrhythmics

- Vaughan Williams classification

- Classified by mechanism of action

- Flaws (things not taken into account)
 - Multiple mechanisms of action of drugs
 - Active metabolites
 - Some drugs don’t fit anywhere

All antiarrhythmics may cause arrhythmias!
Antiarrhythmics

Vaughan Williams classification

- **Class Ia-c**
 - Na+ channel blockade *act to slow electrical conduction in heart*

- **Class II**
 - Adrenergic antagonists - mostly β blockers *act to block impulses*

- **Class III**
 - Ω K+ influx *act to slow electrical conduction*

- **Class IV**
 - Ca++ channel blockade and AV node effects *act to block impulses*

- **Class V**
 - Other or unknown mechanism
Antiarrhythmic therapy
Class I Na+ Channel Blockers

– **Ia** - *Atrial fib/flutter, supravent. & ventricular tachyarrhythmias*

 • Quinidine, *Procainamide (Pronestyl, Procanbid)* *, disopyramide*

– **Ib** - *Ventricular tachyarrhythmias*

 • Lidocaine (*Xylocaine*) *, Phenytoin (*Dilantin*) *, D, mexiletine*

– **Ic** - *Life threatening supra- & ventricular tachyarrhythmias*

 • Flecainide (*Tambocor*) * and propafenone*

Procinamide: Procanbid ☝️ probenecid Do Not Crush ER tablets. May contain Tartrazine (lemon yellow food color, allergen)
ER tablet may leave a wax “ghost” that may pass in stools.

Verapamil may cause HF in combo with flecainide or disopyramide
Antiarrhythmic therapy
Na+ Channel Blockers

- ↓ Transmission of AV electrical impulses → ↑ contractility
- General ADRs
 - Constipation, nausea
 - Flushing, swelling
 - Dizziness, head ache
 - Fatigue
 - Low BP
 - P - +ANA test
 - F - Arrhythmias
 - Procainamide ADRs
 - Fever, seizures, bradycardia, ventricular fibrillation, rash, flushing, lupus-like syndrome
 - Flecainide ADRs
 - HF, cardiac arrest, blurred vision, dyspnea, syncope, depression
Phenytoin ADRs
Class 1b Na\(^{+}\) channel blocker

Phenytoin must be administered slowly

- It can’t be used in:
 - Sinus bradycardia
 - Sino-atrial block
 - AV block

\textit{Dilantin} \& \textit{Dilaudid} (hydromorphone)

\textit{May turn urine pink or reddish}

- CV collapse!
 - Hypotension
 - Bradycardia (pro-arrhythmic)
- CNS
 - Drowsiness/confusion
 - In some patients, EPS
- Bleeding gums/petechia/rashes
 - Blood dyscrasias
 - Purple Glove Syndrome
- Stevens-Johnson Syndrome
- Drug-induced Lupus
- GI
 - Upset/constipation/vomiting
- Hirsutism
- Nastigmus (blurred vision)
- Muscle twitches; seizures w/TCA
- Known human teratogen
- Osteomalacia (\(\otimes\)VitD metab.)
- Connective tissue \(\Delta\)’s
 - Gingival hyperplasia
 - Coarsening of face

\(\text{P}450\uparrow\)
Antiarrhythmic therapy

Class II - β-blockers

- \otimes Catacholamines \rightarrow ↓ HR by ↓ AV node conduction

- General ADRs
 - Depression
 - Dizziness or lightheadedness
 - Weakness and fatigue
 - Sexual dysfunction (impotence)
 - Sleep disruptions

- Examples
 - Propranolol \to C
 - Esmolol
 - Timolol
 - Metoprolol
 - Sotalol
 - Atenolol

- Uses
 - ↓ MI mortality
 - ↓ Tachycardia return
Antiarrhythmic therapy

Class III - K⁺ channel blockers

- \(\otimes \) \(K^+ \) influx \(\rightarrow \) \(\uparrow \) repolarization (takes longer before the next action potential)

Amiodarone ADRs
- Interstitial lung disease
- Thyroid function issues
- Corneal microdeposits
- Blue-grey skin, UV-A sensitivity
- \(\beta \)-blocker effects
- Headache
- Torsade de pointes (form of tachycardia, may be fatal)
- Liver failure, ARDS

Amiodarone (Pacerone)
- Acts as III, Ia, II & IV
- Blocks multiple sites
 - Multiple \(K^+ \) channels
 - \(\alpha \) & \(\beta \) & muscarinic receptors
 - \(Na^+ \) and \(Ca^{++} \) channels
 - Thyroid hormone receptors
- Still the most effective antiarrhythmic for rhythm control

Leaches plasticizers like DEHP from IVs

Inamirone & Amiloride

Requires individualization and monitoring

P450 ↓
Antiarrhythmic therapy

Class IV: Ca++ Channel Blockers

- \otimes Ca++ from entering heart muscle
 - \rightarrow ↓ contractility, dilates blood vessels, ↓BP
 - Uses
 - Paroxysmal supraventricular tachycardia
 - Slow ventricular rate in atrial fibrillation
- General ADRs
 - Constipation, nausea, heart burn
 - Flushing
 - Dizziness, head ache
 - Fatigue
 - Low BP, edema
 - Changes in Heart Rate

$\text{CCBs are pro-arrhythmic and can cause significant edema}$
Antiarrhythmic therapy Class V: Others

Digoxin (Lanoxin) 🧐 🌵 C PO/IV
- cardiac glycoside from foxglove 1st described in 1785!
- Indications: atrial fibrillation & HF
- ADRs
 - Nausea, heart burn
 - Flushing, edema
 - Dizziness, head ache
 - Fatigue
 - Low BP
 - Palpitations
 - Halo vision

Amiodarone may ↑↑ digoxin levels by 70-100%!!
Cholestyramine & metoclopramide ↓ absorption

Digoxin ⚠️
- Doxepram (CNS stim.)
- Doxepin (antidepressant)
- Deptran (doxepin HCl)
- Doxazosin (α1 blocker)
- Doxidan (laxative)

Contraindicated in ventricular arrhythmias

Digoxin toxicity:
1. Low potassium or magnesium
2. 10% of population has GIT bacteria that eat digoxin - if they take tetracycline
3. Abnormal pGP allows digoxin to accum.

Furosemide & thiazides ↓ K+ which ↑↑ digoxin toxicity

A Beale
PHRM 203 - Cardio 2
Antiarrhythmic therapy Class V: Others

- **Adenosine (Adenocard)**
 - IV for arrhythmias, very short \(t_{\frac{1}{2}} \)
 - Indicated for acute supraventricular tachycardia
 - Other formulations used to decrease wrinkles!
 - Antagonized by methyl xanthines (caffeine)