Calculations from chemical equations

If you know the amount of any reactant or product involved in the reaction:

- you can calculate the amounts of all the other reactants and products that are consumed or produced in the reaction

$$
\mathrm{C}_{3} \mathrm{H}_{8}(g)+5 \mathrm{O}_{2}(g) \longrightarrow 3 \mathrm{CO}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(g)
$$

BUT REMEMBER!

The coefficients in a chemical equation provide information ONLY about the proportions of MOLES of reactants and products

- given the number of moles of a reactant/product involved in a reaction, you CAN directly calculate the number of moles of other reactants and products consumed or produced in the reaction
- given the mass of a reactant/product involved in a reaction, you can NOT directly calculate the mass of other reactants and products consumed or produced in the reaction

Mole - mole calculations

Example:

How many moles of ammonia are produced from 8.00 mol of hydrogen reacting with nitrogen?
Equation: $3 \mathrm{H}_{2}+\mathrm{N}_{2} \longrightarrow 2 \mathrm{NH}_{3}$

Conversion factor:

Mole ratio between unknown

$$
2 \text { moles } \mathrm{NH}_{3}
$$

substance (ammonia) and
known substance (hydrogen):
3 moles H_{2}

$$
8.00 \text { moles } \mathrm{H}_{2}\left[\frac{2 \text { moles } \mathrm{NH}_{3}}{3 \text { moles } \mathrm{H}_{2}}\right]=5.33 \text { moles } \mathrm{NH}_{3}
$$

Mole - mole calculations

Given: • A balanced chemical equation

- A known quantity of one of the reactants/product (in moles)

Calculate: The quantity of one of the other reactants/products (in moles)

Use conversion factor based on

ratio between coefficients of substances A and B from balanced equation

Moles of substance B 2

Remember the baking analogy?

How many eggs do you need to make 60 pancakes?

Conversion factor between eggs and pancakes:
6 eggs
24 pancakes

Mole - mole calculations

Given the balanced equation:
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+6 \mathrm{KI}+7 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+4 \mathrm{~K}_{2} \mathrm{SO}_{4}+3 \mathrm{I}_{2}+7 \mathrm{H}_{2} \mathrm{O}$
b) How many moles of sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ are required to produce 2.0 moles of iodine $\left(I_{2}\right)$

Conversion factor:

Mole ratio between the unknown substance (sulfuric acid) and the known substance (iodine):
$7 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}$

$$
2.0 \mathrm{~mol}_{2}\left[\frac{7 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}}{3 \mathrm{~mol}_{2}}\right]=4.7 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}
$$

Mole - mole calculations

Given the balanced equation:

$$
\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+6 \mathrm{KI}+7 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+4 \mathrm{~K}_{2} \mathrm{SO}_{4}+3 \mathrm{I}_{2}+7 \mathrm{H}_{2} \mathrm{O}
$$

a) How many moles of potassium dichromate $\left(\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\right)$ are required to react with 2.0 mol of potassium iodide (KI)

Conversion Factor:

Mole ratio between the unknown $1 \mathrm{~mol} \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
substance (potassium dichromate) and the known substance (potassium iodide):

6 mol KI

$$
2.0 \text { mol } \mathrm{KL}\left[\frac{1 \mathrm{~mol} \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}}{6 \mathrm{moHK}}\right]=0.33 \mathrm{~mol} \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}
$$

${ }_{6}$

Mole - mass calculations

Given: • A balanced chemical equation

- A known quantity of one of the reactants/product (in moles)

Calculate: The mass of one of the other reactants/products (in grams)

Mole - mass calculations

Example:
What mass of hydrogen is produced by reacting 6.0 mol of aluminum with hydrochloric acid?
Equation: $2 \mathrm{Al}(\mathrm{s})+6 \mathrm{HCl}(a q) \longrightarrow 2 \mathrm{AlCl}_{3}(a q)+3 \mathrm{H}_{2}(g)$

Conversion Factor:

Mole ratio between unknown substance (hydrogen) and known substance (aluminum):
$6.0 \mathrm{molal}\left[\frac{3 \mathrm{~mol} \mathrm{H}_{2}}{2 \mathrm{molAL}}\right]=9.0 \mathrm{molH}_{2}\left[\frac{2.016 \mathrm{~g}}{1 \mathrm{~mol}_{2}}\right]=18 \mathrm{~g} \mathrm{H}_{2}$

Mass - mole calculations

How many moles of silver nitrate $\left(\mathrm{AgNO}_{3}\right)$ are required to produce 100.0 g of silver sulfide $\left(\mathrm{Ag}_{2} \mathrm{~S}\right)$?

$$
2 \mathrm{AgNO}_{3}+\mathrm{H}_{2} \mathrm{~S} \longrightarrow \mathrm{Ag}_{2} \mathrm{~S}+2 \mathrm{HNO}_{3}
$$

Step 1: Convert the amount of known substance $\left(\mathrm{Ag}_{2} \mathrm{~S}\right)$ from grams to moles

$$
100.0 \mathrm{gAg}_{2} \mathrm{~S}\left[\frac{1 \mathrm{~mol} \mathrm{Ag}_{2} \mathrm{~S}}{247.87 \mathrm{~g}_{\mathrm{Ag}}^{2} \mathrm{~S}}\right]=0.403 \mathrm{~mol} \mathrm{Ag} 2 \mathrm{~S}
$$

Mass - mole calculations

Given: - A balanced chemical equation

- A known mass of one of the reactants/product (in grams)

Calculate: The quantity of one of the other reactants/products (in moles)

Use ratio between coefficients of substances A and B from

Moles of substance B

10

Mass - mole calculations

How many moles of silver nitrate $\left(\mathrm{AgNO}_{3}\right)$ are required to produce 100.0 g of silver sulfide $\left(\mathrm{Ag}_{2} \mathrm{~S}\right)$?

$$
2 \mathrm{AgNO}_{3}+\mathrm{H}_{2} \mathrm{~S} \longrightarrow \mathrm{Ag}_{2} \mathrm{~S}+2 \mathrm{HNO}_{3}
$$

Step 2: Determine the number of moles of the unknown substance $\left(\mathrm{AgNO}_{3}\right)$ required to produce the number of moles of the known substance ($0.403 \mathrm{~mol} \mathrm{Ag}_{2} \mathrm{~S}$)

Conversion Factor:

Mole ratio between the unknown substance (silver nitrate) and the

$$
2 \mathrm{~mol}_{\mathrm{AgNO}_{3}}
$$

known substance (silver sulfide):
$1 \mathrm{~mol}_{\mathrm{Ag}_{2} \mathrm{~S}}$

$$
\left.0.403{\mathrm{~mol} \mathrm{Ag}_{2} \mathrm{~S}}^{2 \mathrm{~mol} \mathrm{AgNO}_{3}} \frac{1 \mathrm{mot} \mathrm{Ag}_{2} \mathrm{~S}}{}\right]=0.806 \mathrm{~mol} \mathrm{AgNO}_{3}
$$

Mass - mass calculations

Given: - A balanced chemical equation

- A known mass of one of the reactants/product (in grams)

Calculate: The mass of one of the other reactants/products (in grams)

Mass - mass calculations

How many grams of nitric acid are required to produce 8.75 g of dinitrogen monoxide $\left(\mathrm{N}_{2} \mathrm{O}\right)$?

The balanced equation is:

$$
4 \mathrm{Zn}(\mathrm{~s})+10 \mathrm{HNO}_{3}(\mathrm{aq}) \longrightarrow 4 \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}(a q)+\mathrm{N}_{2} \mathrm{O}(\mathrm{~g})+5 \mathrm{H}_{2} \mathrm{O}(\Omega)
$$

Step 2: Determine the number of moles of the unknown substance $\left(\mathrm{HNO}_{3}\right)$ required to produce the number of moles of the known substance ($0.199 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}$)

Conversion Factor:

Mole ratio between the unknown substance (nitric acid) and the known substance (dinitrogen monoxide):

$$
10 \mathrm{~mol} \mathrm{HNO}_{3}
$$

$1 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}$
$0.199 \mathrm{molH}_{2} \mathrm{O}\left[\frac{10 \mathrm{~mol} \mathrm{HNO}_{3}}{1 \mathrm{~mol}_{2} \mathrm{O}}\right]=1.99 \mathrm{~mol} \mathrm{HNO}_{3}$

Mass - mass calculations

How many grams of nitric acid are required to produce 8.75 g of dinitrogen monoxide $\left(\mathrm{N}_{2} \mathrm{O}\right)$?

The balanced equation is:

$$
4 \mathrm{Zn}(\mathrm{~s})+10 \mathrm{HNO}_{3}(\mathrm{aq}) \longrightarrow 4 \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{N}_{2} \mathrm{O}(g)+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Step 1: Convert the amount of known substance $\left(\mathrm{N}_{2} \mathrm{O}\right)$ from grams to moles

Molar mass $\mathrm{N}_{2} \mathrm{O}:(2 \times 14.01 \mathrm{~g} / \mathrm{mol})+16.00 \mathrm{~g} / \mathrm{mol}=44.02 \mathrm{~g} / \mathrm{mol}$
$8.75 \mathrm{gH}_{2} \mathrm{O}\left[\frac{1 \mathrm{~mol} \mathrm{~N}}{2} \mathrm{O}, 0.199 \mathrm{~mol} \mathrm{~N}\right.$

14

Mass - mass calculations

How many grams of nitric acid are required to produce 8.75 g of dinitrogen monoxide $\left(\mathrm{N}_{2} \mathrm{O}\right)$?

The balanced equation is:

$$
4 \mathrm{Zn}(\mathrm{~s})+10 \mathrm{HNO}_{3}(\mathrm{aq}) \longrightarrow 4 \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}(a q)+\mathrm{N}_{2} \mathrm{O}(g)+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Step 3: Convert the amount of unknown substance (1.99 moles HNO_{3}) from moles to grams

$$
\begin{aligned}
& \text { Molar mass } \mathrm{HNO}_{3}: 1.008 \mathrm{~g} / \mathrm{mol}+14.01 \mathrm{~g} / \mathrm{mol}+(3 \times 16.00 \mathrm{~g} / \mathrm{mol}) \\
& =63.02 \mathrm{~g} / \mathrm{mol} \\
& 1.99 \mathrm{moHHOO}_{3}\left[\frac{63.02 \mathrm{~g} \mathrm{HNO}_{3}}{1 \mathrm{~mol}^{2} \mathrm{HNO}_{3}}\right]=125 \mathrm{~g} \mathrm{HNO}_{3}
\end{aligned}
$$

Mass - mass calculation: Another example

How many grams of carbon dioxide are produced by the complete combustion of 100.g of pentane $\left(\mathrm{C}_{5} \mathrm{H}_{12}\right)$?

The balanced equation is:

$$
\mathrm{C}_{5} \mathrm{H}_{12}(g)+8 \mathrm{O}_{2}(g) \longrightarrow 5 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(g)
$$

Step 1: Convert the amount of known substance $\left(\mathrm{C}_{5} \mathrm{H}_{12}\right)$ from grams to moles

$$
\begin{aligned}
& \text { Molar mass } \mathrm{C}_{5} \mathrm{H}_{12}:(5 \times 12.01 \mathrm{~g} / \mathrm{mol})+(12 \times 1.008 \mathrm{~g} / \mathrm{mol}) \\
& =72.15 \mathrm{~g} / \mathrm{mol} \\
& \text { 100. } \mathrm{gC}_{5} \mathrm{H}_{12}\left[\frac{1 \mathrm{~mol} \mathrm{C}_{5} \mathrm{H}_{12}}{72.15 \mathrm{gC}_{5} \mathrm{H}_{12}}\right]=1.39 \mathrm{~mol} \mathrm{C}_{5} \mathrm{H}_{12}
\end{aligned}
$$

17

Mass - mass calculation: Another example

How many grams of carbon dioxide are produced by the complete combustion of 100.g of pentane $\left(\mathrm{C}_{5} \mathrm{H}_{12}\right)$?

The balanced equation is:

$$
\mathrm{C}_{5} \mathrm{H}_{12}(g)+8 \mathrm{O}_{2}(g) \longrightarrow 5 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(g)
$$

Step 3: Convert the amount of unknown substance (6.95 moles CO_{2}) from moles to grams

Molar mass $\mathrm{CO}_{2}: 12.01 \mathrm{~g} / \mathrm{mol}+(2 \times 16.00 \mathrm{~g} / \mathrm{mol})=44.01 \mathrm{~g} / \mathrm{mol}$

$$
6.95 \mathrm{~mol}_{2}\left[\frac{44.01 \mathrm{~g} \mathrm{CO}_{2}}{1 \mathrm{molCO}_{2}}\right]=306 \mathrm{~g} \mathrm{CO}_{2}
$$

Mass - mass calculation: Another example

How many grams of carbon dioxide are produced by the complete combustion of 100.g of pentane $\left(\mathrm{C}_{5} \mathrm{H}_{12}\right)$?

The balanced equation is:

$$
\mathrm{C}_{5} \mathrm{H}_{12}(g)+8 \mathrm{O}_{2}(g) \longrightarrow 5 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(g)
$$

Step 2: Determine the number of moles of the unknown substance $\left(\mathrm{CO}_{2}\right)$ required to produce the number of moles of the known substance ($1.39 \mathrm{~mol} \mathrm{C}_{5} \mathrm{H}_{12}$)

Conversion Factor:

Mole ratio between the unknown substance (carbon dioxide) and the known substance (pentane):

$$
\frac{5 \mathrm{~mol} \mathrm{CO}_{2}}{1 \mathrm{~mol} \mathrm{C}_{5} \mathrm{H}_{12}}
$$

18

Yields

Theoretical yield -- the calculated amount (mass) of product that can be obtained from a given amount of reactant based on the balanced chemical equation for a reaction

Actual yield -- the amount of product actually obtained from a reaction
The actual yield observed for a reaction is almost always less than the theoretical yield due to:

- side reactions that form other products
- incomplete / reversible reactions
- Ioss of material during handling and transfer from one vessel to another

The actual yield should never be greater than the theoretical yield

- if it is, it is an indicator of experimental error

Percent yield $=100 \times \frac{\text { actual yield }}{\text { theoretical yield }}$

Yields

Silver bromide was prepared by reacting 200.0 g of magnesium bromide and an excess amount of silver nitrate.

Equation: $\mathrm{MgBr}_{2}+2 \mathrm{AgNO}_{3} \longrightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{3}+2 \mathrm{AgBr}$
a) What is the theoretical yield of silver bromide?

Step 1: Convert the amount of MgBr_{2} from grams to moles
$200.0-\mathrm{gAgBr}_{2}\left(1 \mathrm{~mol} \mathrm{MgBr} 2 / 184.1--\mathrm{MgBr}_{2}\right)=1.086 \mathrm{~mol} \mathrm{MgBr}_{2}$
${ }^{2}$

Yields

Silver bromide was prepared by reacting 200.0 g of magnesium bromide and an excess amount of silver nitrate.

Equation: $\mathrm{MgBr}_{2}+2 \mathrm{AgNO}_{3} \longrightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{3}+2 \mathrm{AgBr}$
b) Calculate the percent yield if 375.0 g of silver bromide was obtained from the reaction

$$
\begin{aligned}
& \text { theoretical yield }=407.9 \mathrm{~g} \mathrm{AgBr} \\
& \text { percent yield }=100 \times \frac{\text { actual yield }}{\text { theoretical yield }} \\
& \text { percent yield }=100 \times \frac{375.0 \mathrm{~g}}{407.9 \mathrm{~g}}=91.93 \%
\end{aligned}
$$

Yields

Silver bromide was prepared by reacting 200.0 g of magnesium bromide and an excess amount of silver nitrate.

Equation: $\mathrm{MgBr}_{2}+2 \mathrm{AgNO}_{3} \longrightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{3}+2 \mathrm{AgBr}$

a) What is the theoretical yield of silver bromide?

Step 2: Determine how many moles of AgBr can be formed from this amount of MgBr_{2} (i.e., 1.086 moles)

Step 3: Convert from moles to grams
This is the theoretical yield
2.172 mot $\mathrm{AgBr}(187.8 \mathrm{~g} \mathrm{AgBr} / 1 \overline{\text { mot } \mathrm{AgBr}})=407.9 \mathrm{~g} \mathrm{AgBr}$
${ }^{22}$

The concept of limiting reactants

In some chemical reactions, all reagents are present in the exact amounts required to completely react with one another.

Example: In a lab experiment, ammonia is produced by reacting 6.05 g of hydrogen gas (3 moles) with 28.02 g of nitrogen gas (1 mole)

$$
3 \mathrm{H}_{2}+\mathrm{N}_{2} \longrightarrow 2 \mathrm{NH}_{3}
$$

[^0]
The concept of limiting reactants

But in many cases, a chemical reaction will take place under conditions where one (or more) of the reactants is present in excess
-- i.e., there is more than enough of that reactant available for the reaction to proceed

Example: Combustion of 85.0 g of propane in air

$$
\mathrm{C}_{3} \mathrm{H}_{8}(g)+5 \mathrm{O}_{2}(g) \longrightarrow 3 \mathrm{CO}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(g)
$$

There is more than enough oxygen available in the air to react with all of the propane
-- the reaction will proceed until all of the 85.0 g of propane has been consumed

25

Another food analogy...

Recipe for a grilled cheese sandwich:
Two slices bread and one slice of cheese gives one sandwich
Balanced equation:

If you have 10 slices of bread and 4 slices of cheese, how many sandwiches can you make?

- enough bread for ($10 / 2$) = 5 sandwiches
- enough cheese for (4/1) = 4 sandwiches
- you can only make 4 sandwiches before the cheese is used up
- cheese is the limiting reactant

The concept of limiting reactants

But in many cases, a chemical reaction will take place under conditions where one (or more) of the reactants is present in excess
-- i.e., there is more than enough of that reactant available for the reaction to proceed

The limiting reactant is the reactant that is not present in excess
-- the limiting reactant will be used up first (the reaction will stop when the limiting reactant is depleted)
-- the limiting reactant therefore limits the amount of product that can be formed by the reaction

In the previous example, propane was the limiting reactant (oxygen was present in excess)

${ }^{26}$

Another food analogy...

Recipe for a grilled cheese sandwich:
Two slices bread and one slice of cheese gives one sandwich
Balanced equation:

If you have 8 slices of bread and 6 slices of cheese, how many sandwiches can you make?

- enough bread for ($8 / 2$) = 4 sandwiches
- enough cheese for $(6 / 1)=6$ sandwiches
- you can only make 4 sandwiches before the bread is used up
- bread is the limiting reactant

Limiting reactants

Chemistry example:
Hydrogen and chlorine gas combine to form hydrogen chloride:

$$
\mathrm{H}_{2}+\mathrm{Cl}_{2} \longrightarrow 2 \mathrm{HCl}
$$

If 4 moles of hydrogen reacts with 3 moles of chlorine, how many moles of HCl will be formed?

| How much
 HCl can be
 formed from
 $4 \mathrm{~mol} \mathrm{H}_{2} ?$ |
| :--- |$\quad 4 \mathrm{molH}_{2}\left[\frac{2 \mathrm{~mol} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{H}_{2}}\right]=8 \mathrm{~mol} \mathrm{HCl}$

How much
HCl can be formed from
$3 \mathrm{~mol} \mathrm{Cl}_{2}$?
$3 \mathrm{molCl}_{2}\left[\frac{2 \mathrm{~mol} \mathrm{HCl}}{1 \mathrm{motCl}_{2}}\right]=6 \mathrm{~mol} \mathrm{HCl}$

29

Limiting reactants

Chemistry example:

Hydrogen and chlorine gas combine to form hydrogen chloride:

$$
\mathrm{H}_{2}+\mathrm{Cl}_{2} \longrightarrow 2 \mathrm{HCl}
$$

If 4 moles of hydrogen reacts with 3 moles of chlorine, how many moles of HCl will be formed?

Limiting reactants

Chemistry example:
Hydrogen and chlorine gas combine to form hydrogen chloride:

$$
\mathrm{H}_{2}+\mathrm{Cl}_{2} \longrightarrow 2 \mathrm{HCl}
$$

If 4 moles of hydrogen reacts with 3 moles of chlorine, how many moles of HCl will be formed?

> 8 mol HCl can be formed from 4 mol of H_{2}
> 6 mol HCl can be formed from 3 mol of Cl_{2}

3 moles of H_{2} will react with 3 moles of Cl_{2}

- At this point, the Cl_{2} will have been completely consumed and the reaction stops (chlorine is the limiting reactant)
- 1 mole of H_{2} will remain unreacted (hydrogen is present in excess)
- 6 moles of HCl will have been formed

30

Procedure for identifying the limiting reactant

1. Calculate the amounts of product that can be formed from each of the reactants
2. Determine which reactant gives the least amount of product -- this is the limiting reactant

Do not just compare the numbers of moles of reactants -- you must also account for the ratios in which the reactants combine
3. To find the amount of the non-limiting reactant remaining after the reaction:
-- calculate the amount of the non-limiting reactant required to react completely with the limiting reactant
-- subtract this amount from the starting quantity of the non-limiting reactant

Limiting reactant

How many grams of silver bromide (AgBr) can be formed when solutions containing 55.0 g of MgBr_{2} and 95.0 g of AgNO_{3} are mixed together?

Equation: $\quad \mathrm{MgBr}_{2}+2 \mathrm{AgNO}_{3} \longrightarrow 2 \mathrm{AgBr}+\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$

Convert the amounts of reactants from grams to moles

Now determine how much product can be formed from each reactant
${ }^{33}$

Limiting reactant

How many grams of silver bromide (AgBr) can be formed when solutions containing 55.0 g of MgBr_{2} and 95.0 g of AgNO_{3} are mixed together?

$$
\text { Equation: } \quad \mathrm{MgBr}_{2}+2 \mathrm{AgNO}_{3} \longrightarrow 2 \mathrm{AgBr}+\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}
$$

Amount of AgBr that can be produced by 0.559 mol of AgNO_{3} :
$0.559 \operatorname{mot} \mathrm{AgNO}_{3}\left[\frac{2 \mathrm{~mol} \mathrm{AgBr}}{2 \mathrm{~mol} \mathrm{AgNO}_{3}}\right]=\frac{0.559 \mathrm{~mol} \mathrm{AgBr}}{\frac{\mathrm{AgNO}_{3} \text { is the limiting reactant }}{}}$
Convert moles of AgBr to grams of AgBr :

$$
0.559 \text { motAgBr }\left[\frac{187.8 \mathrm{~g} \mathrm{AgBr}}{1 \overline{\text { mot AgBr }}}\right]=105 \mathrm{~g} \mathrm{AgBr}
$$

Limiting reactant

How many grams of silver bromide (AgBr) can be formed when solutions containing 55.0 g of MgBr_{2} and 95.0 g of AgNO_{3} are mixed together?

Equation: $\mathrm{MgBr}_{2}+2 \mathrm{AgNO}_{3} \longrightarrow 2 \mathrm{AgBr}+\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$
Amount of AgBr that can be produced by 0.299 mol of MgBr_{2} :
\left.$0.299{\overline{\text { mol }} \mathrm{AgBr}_{2}}^{2 \mathrm{~mol} \mathrm{AgBr}} \frac{1 \overline{\mathrm{mot} \mathrm{AgBr}_{2}}}{}\right]=0.597 \mathrm{~mol} \mathrm{AgBr}$

Amount of AgBr that can be produced by 0.559 mol of AgNO_{3} :
0.559 mot $\mathrm{AgNO}_{3}\left[\frac{2 \mathrm{~mol} \mathrm{AgBr}}{2 \mathrm{~mol} \mathrm{AgNO}_{3}}\right]=0.559 \mathrm{~mol} \mathrm{AgBr}$

34

Limiting reactant

Limiting reactant

How many grams of silver bromide (AgBr) can be formed when solutions containing 55.0 g of MgBr_{2} and 95.0 g of AgNO_{3} are mixed together?

Equation: $\mathrm{MgBr}_{2}+2 \mathrm{AgNO}_{3} \longrightarrow 2 \mathrm{AgBr}+\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$

How many grams of the excess reactant remain unreacted?

Since AgNO_{3} is the limiting reactant, all 95.0 g of AgNO_{3} will be used up.
Calculate how much MgBr_{2} (the excess reactant) is required to react with $95.0 \mathrm{~g} \mathrm{AgNO}_{3}$ and then determine how much MgBr_{2} is left over.

Remember that in the previous steps, we calculated that 95.0 g of AgNO_{3} is equal to 0.559 moles of AgNO_{3}.

So we first need to determine how many moles of MgBr_{2} are required to react with 0.559 moles of AgNO_{3}
-- then convert to grams and subtract from the original amount of MgBr_{2}
${ }^{37}$

Gravimetric analysis

Gravimetric analysis is a chemical analytical method based on the measurement of masses

- it can be used in combination with precipitation reactions to determine the amount of dissolved substances present in a solution

Limiting reactant

How many grams of silver bromide (AgBr) can be formed when solutions containing 55.0 g of MgBr_{2} and 95.0 g of AgNO_{3} are mixed together?

$$
\text { Equation: } \quad \mathrm{MgBr}_{2}+2 \mathrm{AgNO}_{3} \longrightarrow 2 \mathrm{AgBr}+\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}
$$

How many grams of the excess reactant remain unreacted?

When all 95.0 g of AgNO_{3} has reacted, 51.5 g of MgBr_{2} will have been consumed. The amount of unreacted MgBr_{2} left over is given by:

$$
55.0 \mathrm{~g}-51.5 \mathrm{~g}=3.5 \mathrm{~g} \mathrm{MgBr} 2
$$

${ }^{38}$
Example: A 1-liter sample of industrial wastewater is analyzed for lead (in its Pb^{2+} ionic form) by gravimetric analysis.
This is done by adding excess sodium sulfate to the water sample to precipitate lead (II) sulfate.
The mass of PbSO_{4} produced is 300.0 mg . Calculate the mass of lead in the water sample.

Solution: The dissolved Pb^{2+} ions in the water sample will react with the $\mathrm{SO}_{4}{ }^{2-}$ ions added as sodium sulfate to form insoluble PbSO_{4}

Net ionic equation: $\mathrm{Pb}^{2+}(a q)+\mathrm{SO}_{4}{ }^{2-}(a q) \longrightarrow \mathrm{PbSO}_{4}(\mathrm{~s})$
This is a mass-mass stoichiometry problem
It also involves a limiting reactant, but the problem statement tells you what it is beforehand - i.e., $\mathrm{Pb}^{2+}(\mathrm{aq})$

Net ionic equation: $\mathrm{Pb}^{2+}(a q)+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq}) \longrightarrow \mathrm{PbSO}_{4}(\mathrm{~s})$

Step 1: Convert mass of PbSO_{4} produced to moles
$300.0 \mathrm{mg} \mathrm{PbSO}_{4} \times \frac{1 \mathrm{~g}}{1000 \mathrm{mg}}=0.3000 \mathrm{~g} \mathrm{PbSO}_{4}$
$0.3000 \mathrm{~g} \mathrm{PbSO}_{4} \times \frac{1 \mathrm{~mol} \mathrm{PbSO}_{4}}{303.3 \mathrm{~g} \mathrm{PbSO}_{4}}=9.891 \times 10^{-4} \mathrm{~mol} \mathrm{PbSO}_{4}$
Step 2: Calculate moles of Pb^{2+} required to produce the observed amount of PbSO_{4}
$9.891 \times 10^{-4} \mathrm{~mol}^{\mathrm{PbSO}_{4}}\left(\frac{1 \mathrm{~mol} \mathrm{~Pb}^{2+}}{1 \mathrm{~mol}^{2} \mathrm{PbSO}_{4}}\right)=9.891 \times 10^{-4} \mathrm{~mol} \mathrm{~Pb}^{2+}$

Net ionic equation: $\mathrm{Pb}^{2+}(a q)+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq}) \longrightarrow \mathrm{PbSO}_{4}(\mathrm{~s})$

Step 3: Convert moles Pb^{2+} to mass
$9.891 \times 10^{-4} \mathrm{~mol}^{\mathrm{Pb}^{2+}} \times \frac{207.2 \mathrm{~g} \mathrm{~Pb}^{2+}}{1{\mathrm{~mol} \mathrm{~Pb}^{2+}}}=0.2049 \mathrm{~g} \mathrm{~Pb}^{2+}$ 1
Note: atomic mass of $\mathrm{Pb}^{2+}=$ atomic mass of Pb
(electron mass is ignored)

$$
0.2049 \mathrm{~g} \mathrm{~Pb}^{2+} \times \frac{1000 \mathrm{mg}}{1 \mathrm{q}}=204.9 \mathrm{mg} \mathrm{~Pb}^{2+}
$$

[^0]: In this case, hydrogen and nitrogen are said to react in stoichiometric amounts

