

Definitions

A solution is a system in which one or more substances are homogeneously mixed or dissolved in another substance

- homogeneous mixture
-- uniform appearance
-- similar properties throughout mixture
- The solvent is the dissolving agent
-- i.e., the most abundant component of the solution
- The solute is the component that is dissolved
-- i.e., the least abundant component of the solution

Concentration of solutions

concentration -- the amount of solute dissolved in a given quantity of solvent or solution

There are many different types of concentration units:

Example: Preparation of a 1 molar solution of NaCl

Example: Preparation of a 0.5 molar solution of NaCl

$$
\begin{aligned}
\text { Molarity } & =\frac{0.5000 \mathrm{~mol}}{1.000 \mathrm{~L}} \\
& =\mathbf{0 . 5 0 0 0} \mathbf{~ M}
\end{aligned}
$$

$$
\begin{aligned}
\text { Molarity } & =\frac{0.2500 \mathrm{~mol}}{0.5000 \mathrm{~L}} \\
& =\mathbf{0 . 5 0 0 0} \mathbf{~ M}
\end{aligned}
$$

Example: Preparation of a 1 molar solution of NaCl

Note: Dissolving 1 mole of solute to make 1 liter of solution is not the only way to prepare a solution with a concentration of 1 M (i.e., $1 \mathrm{~mol} / \mathrm{L}$)

Add 0.250 mole of NaCl to an empty 250-ml volumetric flask

Add water to completely dissolve NaCl

Add water until the fill mark is reached and mix thoroughly

What is the molarity of a solution made by dissolving 2.00 g of

potassium chlorate in enough water to make $150 . \mathrm{ml}$ of solution?

Step 1: Start with the definition of molarity:

$$
\text { Molarity }=\frac{\text { moles of solute }}{\text { liters solution }}
$$

Step 2: Determine the number of moles of solute

Molar mass of $\mathrm{KClO}_{3}=39.10+35.45+3(16.00)=\mathbf{1 2 2 . 6} \mathbf{g} / \mathbf{m o l}$

$$
2.00 \mathrm{gKClO}_{3}\left(\frac{1 \mathrm{~mole}_{\mathrm{KClO}}^{3}}{}\right)\left(122.6 \mathrm{gKClO}_{3} \quad\right)=0.0163 \text { moles } \mathrm{KClO}_{3}
$$

What is the molarity of a solution made by dissolving 2.00 g of potassium chlorate in enough water to make 150. $\mathbf{m l}$ of solution?

$$
\text { Molarity }=\frac{\text { moles of solute }}{\text { liters solution }}
$$

Step 3: Determine the number of liters of solution

How many grams of potassium hydroxide are required to prepare 500 . ml of 0.450 M KOH solution?

Step 1: Start with the definition of molarity:

$$
\text { Molarity }=\frac{\text { moles of solute }}{\text { liters solution }}
$$

Step 2: Determine the number of liters of solution

$$
500 . \mathrm{not}\left(\frac{1 \text { liter }}{1000 \mathrm{nPRT}}\right)=0.500 \mathrm{~L}
$$

What is the molarity of a solution made by dissolving 2.00 g of potassium chlorate in enough water to make $150 . \mathrm{ml}$ of solution?

$$
\text { Molarity }=\frac{\text { moles of solute }}{\text { liters solution }}
$$

Step 4: Plug values into molarity equation

$$
\text { Molarity }=\frac{0.0163 \text { moles } \mathrm{KClO}_{3}}{0.150 \mathrm{~L}}
$$

$$
\text { Molarity }=0.109 \text { moles } \mathrm{KCIO}_{3} / \mathrm{L}=\mathbf{0 . 1 0 9} \mathrm{M} \mathrm{KCIO}_{3}
$$

10

How many grams of potassium hydroxide are required to prepare 500 ml of 0.450 M KOH solution?

$$
\text { Molarity }=\frac{\text { moles of solute }}{\text { liters solution }}
$$

Step 3: Plug known values into molarity equation and solve for unknown (moles of solute)

$$
\begin{gathered}
0.450 \mathrm{M} \mathrm{KOH}=\frac{x \text { moles of } \mathrm{KOH}}{0.500 \mathrm{~L}} \\
(0.500 \not \subset) 0.450 \frac{\text { moles KOH }}{\not K}=\frac{x \text { moles of } \mathrm{KOH}}{-0.500 \mathrm{~L}}(0.500 \mathrm{~L}) \\
0.225 \text { moles } \mathrm{KOH}=x
\end{gathered}
$$

How many grams of potassium hydroxide are required to prepare 500 . ml of 0.450 M KOH solution?

$$
\text { Molarity }=\frac{\text { moles of solute }}{\text { liters solution }}
$$

Step 4: Convert moles KOH to grams KOH

Molar mass of $\mathrm{KOH}=39.10+16.00+1.008=56.11 \mathrm{~g} / \mathrm{mol}$

$$
0.225 \text { moles } \mathrm{KOH}\left(\frac{56.11 \mathrm{~g} \mathrm{KOH}}{1 \text { mole } \mathrm{KOH}}\right)=12.6 \mathrm{~g} \mathrm{KOH}
$$

${ }^{13}$

Concentrations of ions in aqueous solutions

When an ionic compound dissolves, the concentrations of the individual ions depend on the chemical formula of the compound

Example: What are the concentrations of Na^{+}and Cl^{-}ions in a 0.125 M aqueous solution of NaCl ?

Calculate the number of moles of nitric acid in 325 ml of $16 \mathrm{M} \mathrm{HNO}_{3}$

Step 1: Start with the definition of molarity:

$$
\text { Molarity }=\frac{\text { moles of solute }}{\text { liters solution }}
$$

Step 2: Plug known values into molarity equation and solve for unknown (moles of solute)

$$
\begin{aligned}
16 \mathrm{M} \mathrm{HNO}_{3} & =\frac{x \text { moles of } \mathrm{HNO}_{3}}{0.325 \mathrm{~L}} \\
(0.325 \mathrm{~L}) 16 \frac{\text { moles } \mathrm{HNO}_{3}}{\mathscr{L}} & =\frac{x \text { moles of } \mathrm{HNO}_{3}}{0.325 \mathrm{~L}}(0.325 \mathrm{~L}) \\
5.2 \text { moles } \mathrm{HNO}_{3} & =x
\end{aligned}
$$

$$
14
$$

Concentrations of ions in aqueous solutions

When an ionic compound dissolves, the concentrations of the individual ions depend on the chemical formula of the compound

Example: What are the concentrations of Mg^{2+} and Cl^{-}ions in a 0.125 M aqueous solution of MgCl_{2} ?

A solution is made by dissolving 9.82 g of copper (II) chloride $\left(\mathrm{CuCl}_{2}\right)$ in enough water to make 600. mL of solution. What is the molarity of Cl^{-}ions in solution?

Step 1: Determine the number of moles of solute

Molar mass of $\mathrm{CuCl}_{2}=63.55+2(35.45)=134.45 \mathrm{~g} / \mathrm{mol}$
$9.82 \mathrm{gCuCl}_{2}\left(\frac{1 \mathrm{~mole} \mathrm{CuCl}_{2}}{134.45 \mathrm{gCuF}_{2}}\right)=0.0730$ moles CuCl_{2}

Step 2: Determine molarity of solute

$$
\text { Molarity }=\frac{0.0730 \text { moles } \mathrm{CuCl}_{2}}{0.600 \mathrm{~L}}=0.122 \mathrm{M} \mathrm{CuCl}_{2}
$$

17

Dilutions

Dilution: Reducing the concentration of a solution by adding more solvent to the solution

- More solvent is added:
-- volume of the solution increases
- No additional solute is added
-- number of moles of solute stays the same

Net result: The molarity of the solution decreases

$$
\downarrow \text { Molarity }=\frac{\text { moles of solute (unchanged) }}{\text { liters solution } \uparrow}
$$

A solution is made by dissolving 9.82 g of copper (II) chloride $\left(\mathrm{CuCl}_{2}\right)$ in enough water to make 600. mL of solution. What is the molarity of Cl^{-}ions in solution?

Step 3: Determine the ion to solute ratio
CuCl_{2} dissociates to give one Cu^{2+} ion and two Cl^{-}ions

Step 4: Determine molarity of the ion
$0.122 \mathrm{M} \mathrm{CuCl}_{2}\left[\frac{2 \text { moles Cl- ions }}{1 \text { mole CuCl }_{2}}\right]=0.244 \mathrm{M} \mathrm{Cl}^{-}$ions

18

Calculate the molarity of a solution prepared by diluting 125 ml of 0.400 M HCl to a final solution volume of 1.00 L .

$$
M_{1} V_{1}=M_{2} V_{2}
$$

$$
\begin{array}{ll}
M_{1}=0.400 \mathrm{M} & M_{2}=? \\
V_{1}=125 \mathrm{ml}=0.125 \mathrm{~L} & V_{2}=1.00 \mathrm{~L}
\end{array}
$$

Calculate the molarity of a solution prepared by diluting 125 ml of 0.400 M HCl to a final solution volume of 1.00 L .

For any dilution problem, remember that the number of moles of solute remains the same:

moles of solute (before) = moles of solute (after)

Based on the definition of molarity, this can be expressed as:

$$
M_{1} V_{1}=M_{2} V_{2}
$$

Where $\boldsymbol{M}_{\boldsymbol{1}}$ is the molarity of the original solution
V_{1} is the volume of the original solution
$\boldsymbol{M}_{\mathbf{2}}$ is the molarity of the diluted solution
\boldsymbol{V}_{2} is the volume of the diluted solution
${ }^{22}$

Solubility

Solubility refers to the ability of a compound to dissolve in a solvent -- different compounds will dissolve to different extents in a given solvent

When water is the solvent:

If a solute dissolves readily in water, it is said to be soluble in water

If a solute will not dissolve in water, it is said to be insoluble in water

Solubility rules

| AN IONIC COMPOUND |
| :--- | :---: |
| IS SOLUBLE IN WATER |
| IF IT CONTAINS THE |
| FOLLOWING IONS: |\quad EXCEPTIONS

25

Sample problems

Are the following compounds soluble or insoluble in water?

NaCl	soluble
$\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$	soluble
CaCO_{3}	insoluble
MgSO_{4}	soluble
BaSO_{4}	insoluble

Solubility rules

| AN IONIC COMPOUND IS |
| :--- | :---: |
| NOT SOLUBLE IN WATER |\quad EXCEPTIONS

26

Double-displacement reactions

double-displacement reaction -- two ionic compounds exchange partners (i.e., cations and anions) to form two different compounds

General form:

Precipitation reactions are a type of double-displacement reaction

Reactions of aqueous solutions: Precipitation reactions

Precipitation reactions are a type of double-displacement reaction
In a precipitation reaction, an insoluble solid (called a precipitate) is formed when reactants in aqueous solution (i.e., dissolved in water) are combined
$\mathrm{BaCl}_{2}(a q)+2 \mathrm{AgNO}_{3}(a q) \longrightarrow 2 \mathrm{AgCl}(s)+\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(a q)$

insoluble precipitate indicated by (s) after its formula
${ }^{29}$

Will the following reactions take place?

Precipitation reactions

Most precipitation reactions occur when the anions and cations of two aqueous ionic compounds switch partners

General form:

$A D+B C$

To predict whether a precipitation reaction will occur:

- look at the potential products of the reaction (i.e., make the anions and cations switch partners)
- determine whether either product is an insoluble solid

Example: Will a precipitation reaction occur when aqueous zinc chloride and potassium hydroxide are mixed?

$$
\mathrm{ZnCl}_{2}(a q)+2 \mathrm{KOH}(a q) \longrightarrow \mathrm{Zn}(\underbrace{\mathrm{OH})_{2}(s)+2 \mathrm{KCl}(a q)}
$$

Use solubility rules to determine if either of these is an insoluble solid

For chemical reactions involving aqueous solutions, three types of equations can be written

Molecular equation

Formulas written for all reactants \& products do not show their ionic character -- i.e., aqueous substances are shown as neutral compounds

$$
\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(a q)+2 \mathrm{KI}(a q) \longrightarrow \mathrm{PbI}_{2}(s)+2 \mathrm{KNO}_{3}(a q)
$$

Complete ionic equation

All soluble strong electrolytes are shown as ions
-- aqueous substances are shown as separate cations and anions
$\mathrm{Pb}^{2+}(a q)+2 \mathrm{NO}_{3^{-}(a q)}+2 \mathrm{~K}^{+}(a q)+2 \mathrm{I}^{-}(a q) \rightarrow \mathrm{PbI}_{2}(s)+2 \mathrm{~K}^{+}(a q)+2 \mathrm{NO}_{3}^{-}(a q)$

Net ionic equation

Includes only the substances that undergo change
-- ions that are present but do not react (spectator ions) are not shown

$$
\mathrm{Pb}^{2+}(a q)+2 \mathrm{I}^{-}(a q) \longrightarrow \mathrm{PbI}_{2}(s)
$$

Procedure for writing net ionic equations

1. Write a balanced molecular equation for the reaction
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(a q)+2 \mathrm{KI}(a q) \longrightarrow \mathrm{PbI}_{2}(s)+2 \mathrm{KNO}_{3}(a q)$
2. Rewrite equation to show aqueous substances as separate cations and anions (i.e., complete ionic equation)

3. Rewrite equation after identifying and canceling spectator ions

$$
\mathrm{Pb}^{2+}(a q)+2 \mathrm{I}^{-}(a q) \longrightarrow \mathrm{PbI}_{2}(s)
$$

${ }^{33}$

Electrolytes

electrolyte -- a substance that forms ions when dissolved in water, resulting in a solution that conducts electricity

Solution of NaCl in water

- presence of Na^{+}and Cl^{-}ions

NaCl is an electrolyte

Electrolytes

electrolyte -- a substance that forms ions when dissolved in water, resulting in a solution that conducts electricity

Electrolytes are capable of producing charge carriers (i.e., ions) in solution

Pure water
Non-electrolyte

34

Formation of ions in solution

[^0]Electrolytes -- substances that form aqueous solutions containing ions

Non-electrolytes -- substances that do not form ions in solution
dissociation -- the separation of an ionic compound into its cations and anions as the compound dissolves

Example: Sodium chloride
$\mathrm{NaCl}(s) \longrightarrow \mathrm{Na}^{+}(a q)+\mathrm{Cl}^{-}(a q)$

Electrolytes

electrolyte -- a substance that forms ions when dissolved in water, resulting in a solution that conducts electricity

Strong and weak electrolytes

Strong electrolytes are solutes that exist in solution completely or nearly completely as ions

Weak electrolytes are solutes that dissociate only partially to form ions in solution
-- exist primarily as non-dissociated molecules in solution, with only a small fraction in the form of ions

- Nearly all soluble ionic compounds are strong electrolytes
- Strong acids and bases are strong electrolytes
- Weak acids and bases are weak electrolytes

We will talk about strong/weak acids and bases shortly

[^0]: O Water
 $+{ }^{+}=\mathrm{Na}^{+}$
 $-\mathrm{Cl}^{-}$

