

Concentration of solutions

concentration -- the amount of solute dissolved in a given quantity of solvent or solution

There are many different types of concentration units:

molarity *\leftarrow* we will focus on this

Definitions

A **solution** is a system in which one or more substances are *homogeneously* mixed or dissolved in another substance

- homogeneous mixture
 - -- uniform appearance
 - -- similar properties throughout mixture
- The solvent is the dissolving agent
 -- *i.e.*, the most abundant component of the solution
- The **solute** is the component that is dissolved -- *i.e.*, the least abundant component of the solution

Concentration units based on the number of moles of solute

molarity -- <u>number of moles</u> of <u>solute</u> per <u>liter</u> of <u>solution</u>

Molarity =

moles of solute liters solution

molarity has units of moles per liter (_____

which can be abbreviated as M

Example: Preparation of a 1 molar solution of NaCl

line

7

500.0-ml flask

= 0.5000 M

8

≻ fill line

Example: Preparation of a 1 molar solution of NaCl

Calculate the molarity of a solution prepared by diluting 125 ml of 0.400 *M* HCl to a final solution volume of 1.00 L.

For any dilution problem, remember that the number of moles of solute *remains the same*:

moles of solute (before) = moles of solute (after)

Based on the definition of molarity, this can be expressed as:

 $M_1 V_1 = M_2 V_2$

Where M_1 is the molarity of the original solution V_1 is the volume of the original solution M_2 is the molarity of the diluted solution V_2 is the volume of the diluted solution

Solubility

22

Solubility refers to the ability of a compound to dissolve in a solvent -- different compounds will dissolve to different extents in a given solvent

When water is the solvent:

If a solute dissolves readily in water, it is said to be *soluble* in water

<u>Examples</u>: NaCl AgNO₃ (NH4)₂CO₃

If a solute will not dissolve in water, it is said to be *insoluble* in water

Examples: Fe(OH)₃ PbCl₂ CaCO₃

Solubil AN IONIC COMPOUND IS <u>SOLUBLE</u> IN WATER	
IF IT CONTAINS THE FOLLOWING IONS:	
Ammonium ion (NH4 ⁺)	none
Alkali metal (Group IA) ions (Li ⁺ , Na ⁺ , K ⁺)	none
Nitrate (NO ₃ ⁻) Acetate (C ₂ H ₃ O ₂ ⁻)	none
Halides (Cl ⁻ , Br ⁻ , I ⁻)	Compounds containing Ag ⁺ , Pb ²⁺ , Hg2 ²⁺
Sulfate (SO ₄ ²⁻)	Compounds containing Ag ⁺ , Pb ²⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺

Sample problems

Are the following compounds soluble or insoluble in water?

NaCl	soluble
(NH4)3PO4	soluble
CaCO ₃	insoluble
MgSO ₄	soluble
BaSO ₄	insoluble
	27

Solubility rules

AN IONIC COMPOUND IS <u>NOT SOLUBLE</u> IN WATER IF IT CONTAINS THE FOLLOWING IONS:	EXCEPTIONS
Carbonate (CO ₃ ²⁻) Phosphate (PO ₄ ³⁻)	Compounds containing Li ⁺ , Na ⁺ , K ⁺ , NH4 ⁺ (soluble)
Hydroxide (OH ⁻)	Compounds containing Li ⁺ , Na ⁺ , K ⁺ , NH4 ⁺ (soluble) Compounds containing Ca ²⁺ , Ba ²⁺ , Sr ²⁺ (<u>slightly</u> soluble)
Sulfide (S ²⁻)	Compounds containing Li ⁺ , Na ⁺ , K ⁺ , NH ₄ ⁺ (soluble) Compounds containing Ca ²⁺ , Ba ²⁺ , Sr ²⁺ (soluble)

Double-displacement reactions

double-displacement reaction -- two ionic compounds exchange partners (*i.e.*, cations and anions) to form two different compounds

Reactions of aqueous solutions: Precipitation reactions

Precipitation reactions

Procedure for writing net ionic equations

1. Write a balanced molecular equation for the reaction

 $Pb(NO_3)_2(aq) + 2 KI(aq) \longrightarrow PbI_2(s) + 2 KNO_3(aq)$

2. Rewrite equation to show aqueous substances as separate cations and anions (i.e., complete ionic equation)

 $Pb^{2+}(aq) + 2 NO_{5-}(aq) + 2 K^{+}(aq) + 2 I^{-}(aq) \rightarrow PbI_{2}(s) + 2 K^{+}(aq) + 2 NO_{5-}(aq)$

3. Rewrite equation after identifying and canceling spectator ions

 $Pb^{2+}(aq) + 2 I^{-}(aq) \longrightarrow PbI_{2}(s)$

Electrolytes

33

electrolyte -- a substance that forms ions when dissolved in water, resulting in a solution that conducts electricity

Electrolytes

electrolyte -- a substance that forms ions when dissolved in water, resulting in a solution that conducts electricity

Formation of ions in solution

= Water

 $= Na^+$

= C1-

Electrolytes -- substances that form aqueous solutions containing <u>ions</u>

Non-electrolytes -- substances that do not form ions in solution

dissociation -- the separation of an ionic compound into its cations and anions as the compound dissolves

Example: Sodium chloride

NaCl $(s) \longrightarrow Na^+(aq) + Cl^-(aq)$

Electrolytes

electrolyte -- a substance that forms ions when dissolved in water, resulting in a solution that conducts electricity

Strong and weak electrolytes

Strong electrolytes are solutes that exist in solution *completely* or *nearly completely* as *ions*

Weak electrolytes are solutes that dissociate only *partially* to form ions in solution

- -- exist primarily as <u>non-dissociated molecules</u> in solution, with only a *small fraction* in the form of <u>ions</u>
- Nearly all soluble ionic compounds are strong electrolytes
- Strong acids and bases are strong electrolytes
- Weak acids and bases are weak electrolytes

We will talk about strong/weak acids and bases shortly

38