ADRENERGIC ANTAGONISTS

• Course: Integrated Therapeutics 1
• Lecturer: Dr. E. Konorev
• Date: September 20, 2010
• Materials on: Exam #3
• Required reading: Katzung, Chapter 10
SYMPATHOLYTIC DRUGS: SITES OF ACTION

Pre-Synaptic Neuron

Tyrosine Hydroxylase

Synthesis Inhibitors:
INHIBIT TYROSINE HYDROXYLASE
METYROSINE INDIRECT ACTING

Prevents storage, depletes NE
RESERPINE INDIRECT ACTING

Synapse

Tyrosine

Reuptake

MAO

α2-autoreceptors

Post-Synaptic Neuron

Adrenergic Receptor Antagonists
DIRECT ACTING

α-receptors

β-receptors

Autoreceptor Agonists:
ACTIVATE INHIBITORY ALPHA-2 AUTORECEPTORS
CLONIDINE INDIRECT ACTING
CATEGORIES OF SYMPATHOLYTIC DRUGS

• Direct sympatholytics (adrenoceptor antagonists)
 – α adrenoceptor antagonists
 • α_1 and α_2 non-selective antagonists
 • α_1 receptor selective
 • α_2 receptor selective
 – Mixed antagonists
 • α and β antagonists
 – β adrenoceptor antagonists
 • β_1 and β_2 non-selective antagonists
 • β_1 receptor selective
 • β_2 receptor selective
• Indirect sympatholytics
ALPHA-ADRENOCEPTOR ANTAGONISTS

• Direct sympatholytics (adrenoceptor antagonists)
 – α adrenoceptor antagonists
 • α₁ and α₂ receptor antagonists
 – Phentolamine
 – Phenoxybenzamine
 • α₁ receptor selective (all end in suffix –osin)
 – Prazosin
 – Terazosin
 – Tamsulosin
 – Doxazosin
 – Alfuzosin
 • α₂ receptor selective
 – Yohimbine
 – Mixed antagonists
 – β adrenoceptor antagonists
• Indirect sympatholytics
REVERSIBLE vs. IRREVERSIBLE ALPHA ANTAGONISTS

Reversible antagonist
- Non-covalent binding to receptor
- Shorter acting
- Effect antagonized by high concentrations of agonist

Phenoxybenzamine
- Irreversible antagonist
- Covalent binding to receptor
- Longer acting
- Effect is not antagonized by the agonist
PHARMACODYNAMICS OF ALPHA ANTAGONISTS

• Cardiovascular system: decreased peripheral resistance and blood pressure, reflex tachycardia, postural hypotension
PHARMACODYNAMICS OF ALPHA ANTAGONISTS

• Genitourinary system
 – Relaxation of smooth muscle in prostate
 – Decreased resistance to the flow of urine
• Eye
 – Miosis
• Respiratory system
 – Nasal and upper respiratory tract stuffiness
SPECIFIC ALPHA ANTAGONIST DRUGS

• Phentolamine $\alpha_1 = \alpha_2$
 – Decreased peripheral resistance
 • Block α_1 receptors in vascular smooth muscle
 – Cardiac stimulation due to
 • Baroreflex
 • Blocking presynaptic $\alpha_2 \rightarrow$ increase in norepinephrine release onto unblocked β_1 receptors on heart
 – Agonist at muscarinic, H$_1$ and H$_2$ receptors
 – Very low selectivity – effects on multiple receptor types
 – Poor oral absorption
SPECIFIC ALPHA ANTAGONIST DRUGS

Phentolamine $\alpha_1 = \alpha_2$
– Adverse effects – cardiac stimulation
 • Tachycardia
 • Arrhythmias
 • Myocardial ischemia
 • GI stimulation \rightarrow diarrhea and increased gastric acid secretion
– Used for treatment of
 • Pheochromocytoma
 • Erectile dysfunction
SPECIFIC ALPHA ANTAGONIST DRUGS

• Phenoxybenzamine $\alpha_1 > \alpha_2$, irreversible antagonist of receptor
 – Also inhibits the reuptake of released norepinephrine
 – Blocks acetylcholine, H$_1$ and serotonin receptors
 – Blocks catecholamine induced vasoconstriction
 – Decreases blood pressure, especially if sympathetic tone is high
 – Cardiac output may increase – reflex effects and/or some presynaptic α_2 blockade
SPECIFIC ALPHA ANTAGONIST DRUGS

Phenoxybenzamine $\alpha_1 > \alpha_2$, irreversible antagonist of receptor

– Major use – pheochromocytoma – preparation for surgery

– Adverse effects
 • Postural hypotension
 • Tachycardia
 • Nasal stuffiness
 • Inhibition of ejaculation
 • Enters CNS – fatigue, sedation, nausea
SPECIFIC ALPHA ANTAGONIST DRUGS

- Prazosin $\alpha_1 >>> \alpha_2$ highly selective antagonist
- Relative absence of tachycardia and cardiac stimulation, as compared with phentolamine or phenoxybenzamine
SPECIFIC ALPHA ANTAGONIST DRUGS

• Prazosin
 – Relaxes smooth muscle in arteries, veins, and prostate
 – May increase HDL levels and decrease LDL
 – Used primarily in the treatment of hypertension

• Terazosin

• Doxazosin
 – Used in hypertension and urinary symptoms of prostate hyperplasia

• Tamsulosin
 – Greater selectivity for α_{1a} than α_{1b}
 – α_{1a} most important α receptor mediating prostate smooth muscle contraction
 – Less potent inhibition of α_1 mediation of vascular smooth muscle contraction
 – Used in benign prostate hyperplasia
Pheochromocytoma – tumor of the adrenal medulla producing catecholamines

- Catecholamine excess causes
 - Tachycardia
 - Arrhythmias
 - Hypertension

- Diagnosis – increased amounts of CA and their metabolites in plasma and urine

- Treatment
 - Phentolamine – during surgery to remove the tumor – get release of stored catecholamines
 - Phenoxybenzamine – used before surgery, useful in inoperable or metastatic pheochromocytoma
CLINICAL PHARMACOLOGY OF ALPHA ANTAGONISTS

• Hypertensive emergencies
 – Limited use
 – Phentolamine may be indicated when have high concentration of circulating α agonists are present
 • Pheochromocytoma
 • Overdose of agonists
 • Clonidine withdrawal
 – Nitrates or nitroprusside preferred

• Chronic hypertension
 – Prazosin family – α_1 selective
 • Work well in moderate hypertension
 • Generally well tolerated
 • Nonselective α-blockers not used
CLINICAL PHARMACOLOGY OF ALPHA ANTAGONISTS

• Erectile dysfunction
 – Consistent inability to maintain erection sufficient for the intercourse
 – Combination of phentolamine and nonspecific vasodilator papaverine
 • Injected into penis
 • Some systemic absorption → orthostatic hypotension
 • Priapism may need direct α-agonist – phenylephrine
CLINICAL PHARMACOLOGY OF ALPHA ANTAGONISTS

• Benign prostate hyperplasia (BPH)
 – Chronic urinary obstruction
 – Many surgical treatments available
 – Tamsulosin
 • Effective with little effect on blood pressure
 • Good for individuals who have experienced postural hypotension with other α_1-blockers
 • Has been shown to exceed effectiveness of 5α-reductase inhibitors – finasteride
 – Prazosin, doxazosin, terazosin are also effective
CLINICAL PHARMACOLOGY OF ALPHA ANTAGONISTS

• Adverse effects
 – Most significant effects are on the CVS
 – Seen less with α_1 selective antagonists
 – Postural hypotension – antagonism of α_1 in venous smooth muscle
 – Reflex tachycardia
 • Block α_2 presynaptic receptors in the heart will increase the release of norepinephrine
 • Baroreflex response to lowering blood pressure
 – Retention of fluid and salt
 – Impaired ejaculation
CATEGORIES OF SYMPATHOLYTIC DRUGS

• Direct sympatholytics
 – α adrenoceptor antagonists
 – Mixed antagonists
 • Labetalol
 • Carvedilol
 – β adrenoceptor antagonists
 • β_1 and β_2 antagonists
 – Propranolol
 – Pindolol
 • β_1 selective
 – Metoprolol
 – Acebutolol
 – Atenolol
 • β_2 selective
 – Butoxamine
• Indirect sympatholytics
TYPES OF THE ACTION AT THE RECEPTORS

• Full Agonists
 • Fully activate receptors
 • Produce a maximal pharmacological effect when all receptors are occupied
 • Maximal intrinsic activity

• Partial Agonists
 • Partially activate the receptor upon binding
 • Produce a sub-maximal pharmacological effect when all receptors are occupied
 • Intrinsic efficacy varies depending on drug, but is always submaximal
TYPES OF THE ACTION AT THE RECEPTORS

• Inverse Agonists
 • Decrease receptor signaling
 • Decrease response at receptors with a significant level of constitutive receptor activity
 • Intrinsic activity is present and related to the inhibition of receptor function
• Antagonists
 • Do not activate the receptor upon binding
 • No pharmacological effect in the absence of agonist
 • No intrinsic efficacy
TYPES OF THE ACTION AT THE RECEPTORS

- E_{MAX} is lower in partial agonists than in full agonists
- Inhibition of a baseline receptor activity by inverse agonists
TYPES OF INTERACTION OF BETA-BLOCKERS WITH RECEPTORS

• Pure antagonists
 – Atenolol
 – Carvedilol
 – Nadolol
 – Propranolol

• Partial agonists (blockers with ISA)
 – Acebutolol
 – Labetalol
 – Penbutolol
 – Pindolol

• Inverse agonists
 – Betaxolol
 – Metoprolol
PARTIAL AGONISTS: BETA-BLOCKERS WITH ISA

- Beta blockers with ISA (Intrinsic Sympathomimetic Activity) are partial agonists at beta adrenergic receptors.
- Block sympathetic effects BUT have submaximal effects of their own = a blunted sympathetic response.
- Less risk for bradycardia, changes in VLDL/HDL, and other effects of beta receptor blockade.

![Bar chart showing percent reduction in heart rate](chart.png)
PHARMACOKINETICS OF BETA-BLOCKERS

- Most of them are lipophilic drugs – well absorbed and rapidly distributed, with large volumes of distribution
- **Propranolol** is able to cross BBB
- Metabolism – **propranolol** and **metoprolol** are extensively metabolized in the liver
 - Extensive first-pass metabolism – low bioavailability with oral administration
 - Metabolized by CYP2D6 – poor metabolizers will show up to 10X increased blood levels
 - Half-life of these drugs may increase as a result of liver disease or hepatic enzyme inhibition
- **Nadolol** is not metabolized and is excreted unchanged in the urine – longest half-life of all beta-blockers (24 h)
 - Half-life of the drug may increase in renal failure
PHARMACODYNAMICS OF BETA-BLOCKERS

- Cardiovascular system
 - Chronic use – lowers blood pressure in hypertensive individuals
 - Will not produce hypotension in normotensive individuals
 - Heart
 - Negative inotropic effect
 - Negative chronotropic effect
 - Block AV node
 - Slowed atrioventricular conduction
 - Increased PR interval
 - Blood vessels
 - Initially – rise in peripheral vascular resistance
 - Chronic use → decrease in PVR
PHARMACODYNAMICS OF BETA-BLOCKERS

Effect of Propranolol on cardiovascular system
PHARMACODYNAMICS OF BETA-BLOCKERS

• Respiratory tract
 – Increase airway resistance especially seen in asthmatics
 – Some patients with COPD may tolerate them

• Eye – reduce intraocular pressure by decreasing the production of aqueous humor

• Metabolic and endocrine effects
 – Inhibit sympathetic stimulation of lipolysis
 – Glycogenolysis partially inhibited by β_2 blockade
 • Not known how much β-antagonists impair recovery from hypoglycemia
 – Care when used with patients with IDDM
 – Much safer in non-IDDM – who do not have hypoglycemic reactions
PHARMACODYNAMICS OF BETA-BLOCKERS

• Metabolic and endocrine effects
 – Inhibit renin release
 – Chronic use – increase VLDL and decreases HDL – LDL usually not changed but ratio LDL/HDL changes
 • Mechanism of changes unknown
 • Might be significant in patients with coronary artery disease
 • May see less of an effect with drugs with partial agonist and β_1 selective activity
PHARMACODYNAMICS OF BETA-BLOCKERS

• Local anesthetic ("membrane-stabilizing") action
 – not related to β blockade
 – Propranolol
 – Pindolol
 – Acebutolol
 – Labetalol
 – Metoprolol

• Antiarrhythmic action (not related to β blockade)
 – blocking potassium channels
 – Sotalol
CLINICAL PHARMACOLOGY OF BETA BLOCKERS

• Hypertension
 – Antihypertensive effect is delayed
 – Beta-blockers are usually used in combination with diuretics and/or vasodilators
 – Both pure beta-blockers and mixed (α and β) blockers (Labetalol, α₁ and β-blocker) are used

• Ischemic heart disease – angina pectoris
 – Blocking cardiac beta-receptors decreases cardiac work and reduces oxygen consumption
 – Beta-blockers reduce the frequency of anginal episodes and improve exercise tolerance
CLINICAL PHARMACOLOGY OF BETA BLOCKERS

• Ischemic heart disease – myocardial infarction
 – Long-term use in post-infarction period – prolong the survival
 • Timolol
 • Propranolol
 • Metoprolol
 – Acute phase of myocardial infarction
 • Contraindications – bradycardia, hypotension, acute heart failure, AV block, active airway disease
CLINICAL PHARMACOLOGY OF BETA BLOCKERS

• Cardiac arrhythmias
 – Effective in ventricular and supraventricular arrhythmias: atrial flutter and atrial fibrillation, ventricular ectopic beats
 – Sotalol – has direct antiarrhythmic action (not mediated by beta-blocking activity)

• Heart failure
 – Effective for the treatment of chronic heart failure in selected patients
 – Metoprolol, bisoprolol, carvedilol shown in clinical trials to be effective
 – Contraindicated in acute congestive heart failure
CLINICAL PHARMACOLOGY OF BETA BLOCKERS

- **Gluacoma**
 - The mechanism involves the reduction in the production of aqueous humor by the ciliary body
 - Timolol, Betaxolol – blockers w/o local anesthetic activity
- **Hyperthyroidism**
 - One of the important aspects of the disease: excessive catecholamine action on the heart
 - Thyroid storm – severe form of hyperthyroidism
 - Tachycardia, supraventricular and ventricular ectopic arrhythmias
 - Propranolol
ADVERSE EFFECTS OF BETA-BLOCKERS

• CNS effects (switch to hydrophilic drugs)
 – Sedation
 – Sleep disturbances
 – Depression
• Respiratory system (switch to beta-1 selective)
 – Bronchospasm, triggering asthma attack in susceptible individuals (chronic asthma, COPD, chronic bronchitis)
ADVERSE EFFECTS OF BETA-BLOCKERS

• Cardiovascular system
 – Depression of cardiac contractility and excitability
 – Exacerbation of peripheral vascular disease (switch to beta-1 selective)
• Metabolic effects (switch to beta-1 selective)
 – Unfavorable blood lipoprotein profile
 – Increased incidence of hypoglycemic episodes
• Abrupt discontinuation of beta-blocker therapy
1. Normal condition
Norpinephrine

\[\beta \text{ adrenergic receptors} \]

Response (e.g., increase in heart rate)

2. Antagonism with a beta blocker
Norpinephrine

\[\beta \text{ adrenergic receptors antagonized by propranolol} \]

Diminished response

3. Compensatory up-regulation of receptor in presence of propranolol
Norpinephrine

\[\beta \text{ adrenergic receptors antagonized by propranolol} \]

Diminished response

4. Compensatory upregulation of receptor in absence of propranolol
Norpinephrine

\[\beta \text{ adrenergic receptors no longer antagonized} \]

INCREASED RESPONSE
ADVERSE EFFECTS OF BETA-BLOCKERS

• Abrupt discontinuation of beta-blocker therapy
 – Increased risk in patients with ischemic heart disease
 – Gradually taper beta blocker dosing to prevent sympathetic hyper-responsiveness and potential toxicity

• Use with caution in:
 – Patients with COPD and asthma
 – Patients with diabetes who are susceptible to hypoglycemia
 – Patients with impaired cardiac function
 – Patients with peripheral vascular disease
INDIRECT SYMPATHOLYTICS

• Direct sympatholytics (adrenoceptor antagonists)
 – α adrenoceptor antagonists
 – Mixed antagonists
 – β adrenoceptor antagonists

• Indirect sympatholytics
 – Reserpine: depletes vesicles of neurotransmitter to inhibit release
 – Clonidine: agonist at presynaptic autoreceptors, inhibits NE release
 – Metyrosine: alpha-methyl tyrosine, inhibits tyrosine hydroxylase, the rate-limiting enzyme in the synthesis of catecholamines