ADRENERGIC AGONISTS

- **Course:**
 Integrated Therapeutics 1

- **Lecturer:**
 Dr. E. Konorev

- **Date:**
 September 16, 2010

- **Materials on:**
 Exam #2

- **Required reading:**
 Katzung, Chapter 9
ADRENERGIC NEUROTRANSMISSION

Pre-Synaptic Neuron

Tyrosine

Tyrosine Hydroxylase

NE = norepinephrine

Synapse

Reuptake

α₂-autoreceptors

MAO

Post-Synaptic Neuron

α-receptors

β-receptors
REGULATION OF ADRENERGIC TRANSMISSION BY PRESYNAPTIC RECEPTORS

- Autoreceptors (α_2)
- Heteroreceptors
CATECHOLAMINES AS ADRENERGIC NEUROTRANSMITTERS

Sympathetic Neurotransmitters
TYPES OF ADRENERGIC RECEPTORS

- α-AR defined by the following potency
 norepinephrine > epinephrine >> isoproterenol
 - Subtypes of α were originally identified by selective antagonists
 - α_1 blocked by prazosin
 - α_2 blocked by yohimbine
 - Further subtypes are now known
 - Selective α_1 and α_2 agonists are now known

Dr. Raymond Ahlquist (1914-1989), suggested that CA act via two principal types of AR, α and β (1948)
TYPES OF ADRENERGIC RECEPTORS

• β-AR defined by the following potency
 isoproterenol >> epinephrine > norepinephrine
 – β₁ and β₂ subtypes of β determined by affinity
 • β₁ affinity – epinephrine = norepinephrine
 • β₂ affinity – epinephrine >> norepinephrine
 – β₃-AR subtype has now been described
• Dopamine (D) receptors
 – Distinct from α and β receptors
 – Important in brain, splanchnic and renal vasculature
TYPES OF ADRENERGIC RECEPTORS

<table>
<thead>
<tr>
<th>Receptor</th>
<th>Agonist</th>
<th>Antagonist</th>
<th>Effects</th>
<th>Gene on Chromosome</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_1 type</td>
<td>Phenylephrine</td>
<td>Prazosin</td>
<td>↑ IP$_3$, DAG common to all</td>
<td></td>
</tr>
<tr>
<td>α_{1A}</td>
<td></td>
<td></td>
<td></td>
<td>C5</td>
</tr>
<tr>
<td>α_{1B}</td>
<td></td>
<td></td>
<td></td>
<td>C8</td>
</tr>
<tr>
<td>α_{1D}</td>
<td></td>
<td></td>
<td></td>
<td>C20</td>
</tr>
<tr>
<td>α_2 type</td>
<td>Clonidine</td>
<td>Yohimbine</td>
<td>↓ cAMP common to all</td>
<td></td>
</tr>
<tr>
<td>α_{2A}</td>
<td>Oxymetazoline</td>
<td></td>
<td></td>
<td>C10</td>
</tr>
<tr>
<td>α_{2B}</td>
<td></td>
<td></td>
<td></td>
<td>C2</td>
</tr>
<tr>
<td>α_{2C}</td>
<td></td>
<td></td>
<td></td>
<td>C4</td>
</tr>
<tr>
<td>β type</td>
<td>Isoproterenol</td>
<td>Propranolol</td>
<td>↑ cAMP common to all</td>
<td></td>
</tr>
<tr>
<td>β_1</td>
<td>Dobutamine</td>
<td>Betaxolol</td>
<td></td>
<td>C10</td>
</tr>
<tr>
<td>β_2</td>
<td>Albuterol</td>
<td>Butoxamine</td>
<td></td>
<td>C5</td>
</tr>
<tr>
<td>β_3</td>
<td></td>
<td></td>
<td></td>
<td>C8</td>
</tr>
<tr>
<td>Dopamine type</td>
<td>Dopamine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D_1</td>
<td>Fenoldopam</td>
<td></td>
<td>↑ cAMP</td>
<td>C5</td>
</tr>
<tr>
<td>D_2</td>
<td>Bromocriptine</td>
<td></td>
<td>↓ cAMP</td>
<td>C11</td>
</tr>
<tr>
<td>D_3</td>
<td></td>
<td></td>
<td>↓ cAMP</td>
<td>C3</td>
</tr>
<tr>
<td>D_4</td>
<td>Clozapine</td>
<td></td>
<td>↓ cAMP</td>
<td>C11</td>
</tr>
<tr>
<td>D_5</td>
<td></td>
<td></td>
<td>↑ cAMP</td>
<td>C4</td>
</tr>
</tbody>
</table>
SIGNAL TRANSDUCTION BY ADRENOCEPTORS

\(\alpha_1 \) receptor activation

IP\(_3\) – increase in cytosolic Ca

DAG – activation of PKC

Activation of mitogen-activated kinases (MAPK) and polyphosphoinositol-3-kinase (PI-3 kinase) regulate gene expression, lead to stimulation of cell growth and proliferation
SIGNAL TRANSDUCTION BY ADRENOCEPTORS

β-receptor activation
- Accumulation of cAMP
- Activation of protein kinase A (PKA) by cAMP

α₂-receptor activation
- Decrease in cAMP levels
- Inhibition of PKA
DOWNREGULATION OF ADRENERGIC TRANSMISSION

- Desensitization of adrenergic receptors
 - GRK, G-protein coupled receptor kinase
DOWNREGULATION OF ADRENERGIC TRANSMISSION

- Receptor internalization and lysosomal degradation
The Sympathetic Nervous System
“fight or flight”

- **EYES**: Dilates pupil: mydriasis
- **SALIVARY GLANDS**: Decreased salivation
- **HEART**: Increases heart rate, speeds up conduction through AV node, increases force of contraction
- **LUNGS**: Relaxation of bronchial smooth muscle
- **GI TRACT**: Decreased motility (relaxes smooth muscle, contracts sphincters)
- **LIVER**: Increased glucose production (stimulates gluconeogenesis and glycogenolysis)
- **ADRENAL MEDULLA**: Releases norepinephrine and epinephrine
- **BLADDER**: Relaxation (urinary retention)
- **PROSTATE GLAND**: Smooth muscle contraction (urinary obstruction)
- **SWEAT GLANDS**: Increased sweating
- **VASCULAR SMOOTH MUSCLE**: Arteries supplying skeletal muscle and liver: relaxation (vasodilation). Most other vessels: contraction (vasoconstriction)
HEART:
- Increases heart rate
- Speeds up conduction through AV node
- Increases force of contraction

LUNGS:
- Relaxation of bronchial smooth muscle

LIVER:
- Increased glucose production
 (stimulates gluconeogenesis and glycogenolysis)

ADRENAL MEDULLA:
- Releases norepinephrine and epinephrine
 (via circulating norepinephrine and epinephrine)

PROSTATE GLAND:
- Smooth muscle contraction (urinary obstruction)

SWEAT GLANDS:
- Increased sweating

SOME IMPORTANT SYMPATHETIC RECEPTORS

- **α₂ Receptors:** Inhibit sympathetic n.s.
- **β₁ Receptors:**
 - Increases heart rate
 - Speeds up conduction through AV node
 - Increases force of contraction
 - Increased cardiac output
- **β₂ Receptors:**
 - LUNGS: Relaxation of bronchial smooth muscle
 - LIVER: Increased glucose production
 (stimulates gluconeogenesis and glycogenolysis)
 - ADRENAL MEDULLA: Releases norepinephrine and epinephrine
 (via circulating norepinephrine and epinephrine)
 - PROSTATE GLAND: Smooth muscle contraction (urinary obstruction)
- **α₁ Receptors:**
 - Most other vessels: Contraction (vasoconstriction)

- **M Receptors:**
 - SWEAT GLANDS: Increased sweating

VASCULAR SMOOTH MUSCLE:
- Arteries supplying skeletal muscle and liver: Relaxation (vasodilation)
DISTRIBUTION OF ADRENOCEPTORS

<table>
<thead>
<tr>
<th>Type</th>
<th>Tissue</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_1</td>
<td>Most vascular smooth muscle (innervated)</td>
<td>Contraction</td>
</tr>
<tr>
<td></td>
<td>Pupillary dilator muscle</td>
<td>Contraction (dilates pupil)</td>
</tr>
<tr>
<td></td>
<td>Prostate</td>
<td>Contraction</td>
</tr>
<tr>
<td>α_2</td>
<td>Platelets</td>
<td>Aggregation</td>
</tr>
<tr>
<td></td>
<td>Adrenergic and cholinergic nerve terminals</td>
<td>Inhibition of transmitter release</td>
</tr>
<tr>
<td></td>
<td>Some vascular smooth muscle</td>
<td>Contraction</td>
</tr>
<tr>
<td></td>
<td>Fat cells</td>
<td>Inhibition of lipolysis</td>
</tr>
<tr>
<td>β_1</td>
<td>Heart</td>
<td>Increases force and rate of contraction</td>
</tr>
<tr>
<td>β_2</td>
<td>Respiratory, uterine, and vascular smooth muscle</td>
<td>Promotes smooth muscle relaxation</td>
</tr>
<tr>
<td></td>
<td>Human liver</td>
<td>Activates glycogenolysis</td>
</tr>
<tr>
<td>β_3</td>
<td>Fat cells</td>
<td>Activates lipolysis</td>
</tr>
<tr>
<td>D_1</td>
<td>Smooth muscle</td>
<td>Dilates renal blood vessels</td>
</tr>
<tr>
<td>D_2</td>
<td>Nerve endings</td>
<td>Modulates transmitter release</td>
</tr>
</tbody>
</table>
ORGAN SYSTEM EFFECTS

• Overall effect of adrenergic drugs on organs and tissues is determined by
 – The type of receptor(s) the tissue is expressing
 – Selectivity of the drug for receptor subtypes
 – Intrinsic activity of the drug at receptor
 – Compensatory reflexes
 – Development of tolerance and tachyphylaxis
DIRECT vs. INDIRECT SYMPATHOMIMETIC DRUGS

Pre-Synaptic Neuron
- Reuptake Blockers
 - Cocaine
 - INDIRECT ACTING

Synapse
- MAO
- α-receptors
- β-receptors
- NE
- Reuptake

Post-Synaptic Neuron
- Adrenergic Receptor Agonists
 - INDIRECT ACTING
- Direct Acting Releasing agents
 - Amphetamines, Ephedrine
 - INDIRECT ACTING

Monoamine Oxidase (MAO) Inhibitors
- Phenelzine
 - INDIRECT ACTING

NE - Norepinephrine
TYPES OF SYMPATHOMIMETIC DRUGS

- **Direct sympathomimetics**
 - Alpha agonists
 - Phenylephrine
 - Methoxamine
 - Clonidine
 - Mixed alpha and beta agonists
 - Norepinephrine
 - Epinephrine
 - Beta agonists
 - Dobutamine
 - Isoproterenol
 - Terbutaline
 - Albuterol
 - Ritodrine
 - Dopamine agonists
 - Dopamine
 - Fenoldopam

- **Indirect sympathomimetics**
SELECTIVITY OF ADRENERGIC AGONISTS

<table>
<thead>
<tr>
<th>Relative Receptor Affinities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha agonists</td>
</tr>
<tr>
<td>Phenylephrine, methoxamine</td>
</tr>
<tr>
<td>Clonidine, methylnorepinephrine</td>
</tr>
<tr>
<td>Mixed alpha and beta agonists</td>
</tr>
<tr>
<td>Norepinephrine</td>
</tr>
<tr>
<td>Epinephrine</td>
</tr>
<tr>
<td>Beta agonists</td>
</tr>
<tr>
<td>Dobutamine1</td>
</tr>
<tr>
<td>Isoproterenol</td>
</tr>
<tr>
<td>Terbutaline, metaproterenol, albuterol, ritodrine</td>
</tr>
<tr>
<td>Dopamine agonists</td>
</tr>
<tr>
<td>Dopamine</td>
</tr>
<tr>
<td>Fenoldopam</td>
</tr>
</tbody>
</table>
ORGAN SYSTEMS EFFECTS

• Cardiovascular system
 – Blood vessels
 • α_1 causes contraction and increase in vascular resistance
 • β_2 causes smooth muscle relaxation
 • D_1 causes smooth muscle relaxation
 • Significant differences in receptor types found in vascular beds
 – Skin vessels and mucous membranes – mostly α_1
 – Splanchnic – mostly α_1 and D_1
 – Skeletal muscle – α_1 and β_2
 – Renal, cerebral – D_1 and α_1
ORGAN SYSTEM EFFECTS

• Cardiovascular system
 – Heart – mostly β_1
 • Increase calcium influx
 – Positive chronotropic – increase pacemaker rate
 – Increase in conduction velocity at AV node
 – Refractory period decreased
 – Positive inotropic effects
 • Presence of normal reflexes – heart rate response may be dominated by reflex response to blood pressure changes
ORGAN SYSTEM EFFECTS

Cardiovascular system

- Blood Pressure = Cardiac Output x Vascular Resistance
- **Epinephrine** = agonists at ALL adrenergic receptors; little change in blood pressure
- **Norepinephrine** = low affinity towards beta-2 adrenergic receptors; large increase in blood pressure

Norepinephrine

- α_1
 - Vasoconstriction = Increased Blood Pressure

Epinephrine

- β_1
 - Increased Cardiac Output = Increased Blood Pressure

- β_2
 - Vasodilation = Decreased Blood Pressure
ORGAN SYSTEM EFFECTS

Effect of adrenomimetics on heart rate (HR) and blood pressure (BP)
ORGAN SYSTEM EFFECTS

• Cardiovascular system
 – Alpha agonist – phenylephrine
 • Increases peripheral arterial resistance
 • Decreases venous capacitance
 • Increase blood pressure but a reflex decrease in heart rate
 • CO may not change - increase venous return may increase stroke volume
 – Beta agonist – isoproterenol
 • Increases cardiac function and cardiac output
 • Relaxes vascular smooth muscle and decreases blood pressure
ORGAN SYSTEMS EFFECTS

• Eye
 – α_1 agonist – contracts pupil dilator muscle - mydriasis

• Respiratory tract
 – β_2 agonist – bronchodilation
 – α_1 agonist – decrease in mucus secretion in the upper respiratory tract – decongestant action – is due to the contraction of vascular smooth muscle
ORGAN SYSTEMS EFFECTS

- **Genitourinary system**
 - Human uterus contains both α and β_2
 - β_2 – mediates relaxation – useful in pregnancy
 - Bladder base, urethral sphincter and prostate
 - α_1 promotes contraction \rightarrow urinary retention
 - β_2 mediates relaxation
 - Ejaculation – proper α receptor activation
 - Detumescence of erectile tissue – via α_1
ORGAN SYSTEM EFFECTS

• Metabolic effects
 – β_3 activation – fat cells – lipolysis, enhance the release of free fatty acids into plasma
 – α_2 in lipocytes – inhibits lipolysis by decreasing intracellular cAMP
 – β_2 agonists – increase glycogenolysis and gluconeogenesis in the liver

• Endocrine effects
 – β_2 receptor activation – stimulates insulin secretion
 – α_2 agonists – inhibit insulin secretion
 – Stimulation of renin release by β_1 (inhibited by α_2)

• One mechanism by which β-receptor antagonists are effective for the treatment of hypertension
ORGAN SYSTEM EFFECTS

• Central nervous system
 – Vary significantly with the ability to pass BBB
 – Catecholamines – do not pass
 – Non-catecholamines (such as amphetamine) will pass BBB and have following effects
 • Mild alerting effects
 • Improved attention to boring tasks
 • Insomnia
 • Euphoria
 • Anorexia
 • Psychotic behavior
ALPHA ADRENERGIC AGONISTS

- Phenylephrine – direct acting α agonist
 - $\alpha_1 > \alpha_2 >>>\beta$
 - Not a catechol – not inactivated by COMT – longer duration of action
 - Effective mydriatic and decongestant
 - Can be used to raise blood pressure

- Methoxamine – direct acting α_1 selective agonist
 - Similar to phenylephrine
 - Limited use – hypotensive states
ALPHA ADRENERGIC AGONISTS

• Midodrine – direct acting α_1 selective agonist
 – Use for disabling chronic orthostatic hypotension
 – Unlabeled use – urinary incontinence

• Xylometazoline and Oxymetazoline – direct acting α agonists
 – Topical decongestants – constrict vessels in nasal mucosa
 – Large dose of oxymetazoline may cause hypotension similar to clonidine because of high α_{2A} affinity
ALPHA ADRENERGIC AGONISTS

- α_2 selective agonists $\alpha_2 > \alpha_1 >>>>> \beta$
 - Decrease blood pressure – central effect – decreasing sympathetic outflow
 - Local application may produce vasoconstriction
 - Clonidine
 - Methyldopa
 - Guanfacine – may have less adverse effects than clonidine
 - Guanabenz
 - Dexmedetomidine – indicated for sedation during initial intubation
MIXED ALPHA AND BETA AGONISTS

- **Epinephrine** - $\alpha_1 = \alpha_2 ; \beta_1 = \beta_2$
 - Potent cardiac stimulant
 - Variable effects on the vascular tone
 - Because of significant β_2 agonist effects causes bronchodilation and vasodilation in certain vascular beds (skeletal muscle)
 - Total peripheral vascular resistance may fall

- **Norepinephrine** - $\alpha_1 = \alpha_2 ; \beta_1 >> \beta_2$
 - Potent cardiac stimulant
 - Potent vasoconstrictor
 - Lacks β_2 agonist effects – no bronchodilation and vasodilation
 - Increases peripheral vascular resistance and blood pressure
BETA ADRENERGIC AGONISTS

- **Isoproteanol** - $\beta_1 = \beta_2 \gg \gg \alpha$
 - Non-selective beta agonist
 - Potent cardiac stimulant, increases cardiac output
 - Vasodilator, decreases arterial pressure
 - Causes bronchodilation

- **Dobutamine** - $\beta_1 > \beta_2 \gg \gg \alpha$
 - Selective beta-1 agonist
 - Cardiac stimulant
BETA ADRENERGIC AGONISTS

• Ritodrine - $\beta_2 > \beta_1 >>>> \alpha$
 – Selective beta-2 agonist
 – Causes uterine relaxation

• Terbutaline, Albuterol - $\beta_2 > \beta_1 >>>> \alpha$
 – Selective beta-2 agonists
 – Cause bronchodilation
DOPAMINE AGONISTS

- Dopamine $D_1 = D_2 \gg \beta_1 \gg \alpha_1$
 - D_1 stimulation causes vasodilation
 - Especially important for renal blood flow
 - Activation of presynaptic D_2 – suppresses norepinephrine release
 - Activates β_1 in heart at higher doses
 - At still higher doses stimulates vascular αAR \rightarrow vasoconstriction – at high concentration mimics the actions of mixed AR agonists

- Fenoldopam $D_1 \gg D_2$
 - Causes peripheral vasodilation – used in severe hypertension
TYPES OF SYMPATHOMIMETIC DRUGS

• Direct sympathomimetics
• Indirect sympathomimetics
 – Cocaine: inhibits re-uptake
 – Phenelzine: inhibits MAO
 – Amphetamines: releasing agents, may have weak direct effect
 – Ephedrine: releasing agent AND direct adrenergic receptor agonist
SELECTIVITY OF INDIRECT vs. DIRECT ADRENERGIC AGONISTS DRUGS

- **Indirect-acting Drugs**
 - **Non-selective:** All receptors that respond to NE are affected
- **Direct-acting Drugs** (receptor agonists)
 - **More Selective:** Only receptors that directly bind drugs are affected
 - Some DIRECT-ACTING drugs are NON-SELECTIVE (bind to multiple receptor types – Epinephrine)

EXAMPLE:
- **Cocaine:** inhibits NE re-uptake (indirect acting sympathomimetic, non-selective agonist)
- **Phenylephrine:** selective alpha-1 receptor agonist (selective adrenergic receptor agonist)
- **Dobutamine:** selective beta-1 receptor agonist (selective adrenergic receptor agonist)
INDIRECT ADRENERGIC AGONISTS

- Usually more lipophilic compounds (not catecholamines)
- Easily penetrate BBB – have significant central effects – central nervous system stimulants
 - Amphetamine, methamphetamine
 - Marked stimulant effect on mood and alertness
 - Decrease appetite
 - Drugs of abuse
 - Methylphenidate
 - Used in children with attention deficit hyperactivity disorder (ADHD)
 - Similar to amphetamine – has abuse potential
INDIRECT ADRENERGIC AGONISTS

– Ephedrine – releases stored catecholamines with some direct action
 • Plant constituent
 • Non-catechol – long duration of action
 • Nonselective – similar to epinephrine in actions
 • Mild stimulant – enters CNS
 • Clinical use
 – Nasal decongestant
 – Pressor agent
 – Stress incontinence in women
– Pseudoephedrine – indirect action only
 • Nasal decongestant
 • Stress incontinence in woman
INDIRECT ADRENERGIC AGONISTS

– Mephentermine
 • Both direct alpha- and indirect agonist
 • Used in the treatment of hypotension, and shock
 • Central stimulant effects are less severe than with amphetamine

– Cocaine
 • Inhibits transmitter reuptake at adrenergic synapses
 • Peripheral and intense central action
 • Local anesthetic properties
 • Heavily abused drug

– Phenelzine
 • Inhibitor of MAO
 • Increases NE stores in CNS
 • Antidepressant action
INDIRECT ADRENERGIC AGONISTS

– Tyramine
 • a product of tyrosine metabolism that is found in high concentrations of certain types of food
 – Cheese
 – Cured meats
 – Smoked and pickled fish
 • Releases stored NE from presynaptic adrenergic terminals
 • Is metabolized by MAO in liver
 • May lead to marked increase in blood pressure in patients taking MAO inhibitors
CLINICAL PHARMACOLOGY OF ADRENERGIC AGONISTS

Cardiovascular conditions
• To increase blood pressure
 – Hypotensive emergencies – hemorrhagic shock, overdose of antihypertensives, CNS depressants
 • Norepinephrine
 • Phenylephrine
 • Methoxamine
 – Chronic hypotension
 • Ephedrine
 • Midodrine
 – Cardiogenic shock – due to massive acute myocardial infarction
 • Dopamine
 • Dobutamine
Cardiovascular conditions

• Conditions when blood flow is to be reduced
 – Decongestion of mucous membranes
 • Phenylephrine, ephedrine, pseudoephedrine, xylomethazoline, oxymethazoline
 – Hemostasis during surgery
 • Epinephrine
 – Combination with local anesthetics
 • Epinephrine, phenylephrine, norepinephrine

CLINICAL PHARMACOLOGY OF ADRENERGIC AGONISTS
Other cardiovascular conditions

- Heart failure (short-term use of beta-1 agonists)
- Hypertension (alpha-2 agonists)
- Emergency therapy for complete AV block and cardiac arrest
 - Epinephrine
 - Isoproterenol
CLINICAL PHARMACOLOGY OF ADRENERGIC AGONISTS

• Bronchial asthma
 – Beta-2 selective agonists
 • Albuterol
 • Terbutaline
• Anaphylaxis – immediate (type 1) allergic reaction characterized by respiratory and cardiovascular components
 – Respiratory component – bronchospasm and upper airway congestion
 – Cardiovascular component – severe hypotension, cardiac depression
 – Epinephrine – effective at both components
CLINICAL PHARMACOLOGY OF ADRENERGIC AGONISTS

• Ophthalmic applications
 – Examination of retina – induction of mydriasis
 • Phenylephrine
 – Glaucoma
 • Alpha-2 selective agonists (Apraclonidine, brimonidine)

• Genitourinary applications
 – Suppression of premature labor
 • Beta-2 agonists (ritodrine, terbutaline)
 – Stress incontinence
 • Ephedrine
 • Pseudoephedrine
 – Priapism
 • Alpha-1 agonists (phenylephrine) via injection into the penis
Central nervous system conditions

- Narcolepsy – sudden brief sleep attacks
 - Amphetamines
 - Methylphenidate

- ADHD – short attention span, learning problems, and hyperkinetic physical behavior
 - Methylphenidate
 - Modafinil
Central nervous system conditions

- Obesity – central inhibition of appetite and increased energy expenditure
 - Phentermine
 - Ephedrine
- Sedation in general anesthesia and intensive care units
 - Dexmedetomidine
ADVERSE EFFECTS OF ADRENERGIC AGONISTS

- Present extensions of their pharmacologic effects in CVS and CNS
- Cardiovascular adverse effects
 - Elevation in blood pressure
 - Increased cardiac work may precipitate myocardial ischemia and heart failure – special attention should be given to elderly patients and patients with hypertension, coronary artery disease, and chronic heart failure
 - Sinus tachycardia and serious ventricular arrhythmias
 - Direct myocardial damage leading to cardiomyopathy
 - May induce sudden cardiac death
ADVERSE EFFECTS OF ADRENERGIC AGONISTS

• Central nervous system toxicity
 – Most of agonist drugs (catecholamines and other polar drugs that do not cross BBB), do not cause CNS toxicity
 – Amphetamine and amphetamine-like compounds cause
 • Insomnia
 • Anxiety, restlessness
 • Paranoid state
 – Cocaine may cause
 • Convulsions
 • Arrhythmias
 • Hemorrhagic stroke