Pharmacology: Genitourinary

Lecturer: JACOBS
Pharmacology: Genitourinary

Conditions Covered In This Lecture:

- Benign prostatic hyperplasia (BPH)
- Erectile dysfunction
- Urinary Incontinence
Pharmacology: Genitourinary
Benign Prostatic Hyperplasia

Prostate

• Fibrous, muscular, and glandular (secretory) organ
• Acts as a conduit for urine and semen
• **Contracts** during ejaculation to prevent “retrograde” movement of semen into the bladder
• Secretes **Prostatic fluid** (20-30% of semen):
 • Alkaline, milky white, rich in zinc
 • Helps to neutralize acidity of vaginal fluids (along with seminal vesicle fluid) to promote sperm survival
Pharmacology: Genitourinary
Benign Prostatic Hyperplasia

Related Anatomy

bladder
ureters
seminal vesicle
vas (ductus) deferens
ejaculatory ducts
Cowper’s gland
bladder neck
urethra

Transition Zone
Anterior Fibromuscular Stroma
Prostatic urethra
Peripheral Zone
Central Zone
Pharmacology: Genitourinary

Benign Prostatic Hyperplasia

BPH = Benign Prostatic Hyperplasia

Hypertrophy: abnormal and excessive cell growth (enlargement)

Hyperplasia: abnormal and excessive cell division

What stimulates prostatic hyperplasia?
Pharmacology: Genitourinary

Benign Prostatic Hyperplasia

transition zone section

circulating testosterone (T)

5α-reductase

dihydrotestosterone (DHT)

stromal cells

glandular cells

ducts
Pharmacology: Genitourinary
Benign Prostatic Hyperplasia

Stimulation of cell division by DHT causes glandular hyperplasia and organ enlargement.

corpora amylacea (calcifications)

DHT → Androgen Receptor (AR) → AR-Dependent Gene Expression → Growth Factors (e.g. IGF-1) Biomarkers (e.g. PSA)
Pharmacology: Genitourinary

Benign Prostatic Hyperplasia

Common Features

• Benign (non-metastatic; adenomatous) growth of prostate
• Commonly affects transition zone, promoted by DHT
• Advanced cases can become highly nodular
 (multiple fibrous adenomas)
 Increased risk of prostate cancer? (see slide 24)
• Age-related progression
 • 50% of 50 year-olds
 • 75% of 80 year-olds
• About 50% of cases produce ‘problematic’ symptoms
• Affects 14 million men in US
Pharmacology: Genitourinary
Benign Prostatic Hyperplasia

Complications of BPH:
- Restriction of urethral diameter
- Bladder compression
- Bladder neck obstruction
 - possible occlusion by 3rd prostate lobe – like a ball valve

Possible Symptoms:
- Reduced bladder capacity
- Reduced urine flow
- Urinary pain
- Hematuria (blood in urine)
- Difficulty initiating urination
- Incomplete voiding
- UTI, cystitis
- May lead to elevated PSA (from prostatic irritation, infection)
Pharmacology: Genitourinary

Benign Prostatic Hyperplasia

Therapeutic Approaches:

Catheterization ("Foley" catheter)
- Risk of infection with long-term use

Surgical, examples:
- Prostatic Stent
- Transurethral Resection of the Prostate (TURP)

Images: Mayo Clinic
Pharmacology: Genitourinary
Benign Prostatic Hyperplasia

Therapeutic Approaches: Pharmacological

Alpha-1 blockers

GOAL: Decrease contractility (of the trigone muscle, internal urethral sphincter muscle, and prostate gland)

5α-reductase inhibitors

GOAL: Inhibit androgen (DHT) production
Pharmacology: Genitourinary
Benign Prostatic Hyperplasia

Therapeutic Approaches:

Alpha-1 blockers

Selective α_1 adrenergic antagonists:

- **Alfuzosin** (Uroxatral®)
- * **Doxazosin** (Cardura®)
- * **Prazosin** (Minipress®)
- **Silodosin** (Rapaflo®)
- **Tamsulosin** (Flomax®)
- * **Terazosin** (Hytrin®)

* **Doxazosin, Terazosin:**

 FDA: approved for BPH *and hypertension*

Prazosin:

FDA: approved for hypertension (BPH is off-label)
Pharmacology: Genitourinary
Benign Prostatic Hyperplasia

STORAGE REFLEX

- **RED = sympathetic (NE)**
- RED = afferent stretch receptors (storage reflex active)

- **RELAX DETRUSOR**
 - \(\beta_2 \)

- **CONTRACT TRIGONE + IN. SPHIN.**
 - \(\alpha_1 \) innervation of TRIGONE and INTERNAL URETHRAL SPHINCTER

- So, \(\alpha_1 \) blockers \(\downarrow \) tone of bladder neck and outlet

VOIDING REFLEX

- **GREEN = parasympathetic (ACh)**
- GREEN = afferent stretch receptors (storage reflex silenced)

- **BLUE = spinobulbal reflex pathways** (INHIBITS SYMPATHETIC TONE)

Sympathetic \(\alpha_1 \) innervation of TRIGONE and INTERNAL URETHRAL SPHINCTER

So, \(\alpha_1 \) blockers \(\downarrow \) tone of bladder neck and outlet

IMAGES: Nature Reviews Neuroscience
Pharmacology: Genitourinary

Benign Prostatic Hyperplasia

Where are α_1 receptors located? (actions)

Three subtypes: α_{1A}, α_{1B}, α_{1D}

Vasoconstriction α_{1B} (+ α_{1D} *)
Decreases perfusion of skin; GI tract; kidney; brain
also: erectile tissue,

* role of D is somewhat elusive

Contraction α_{1A}
Contracts sphincters α_1

Increased force (positive inotropy)
α_{1A}, α_{1B}

Mydriasis: α_{1A} (radial muscle)

Piloerection α_1
(arreector pili)
Pharmacology: Genitourinary
Benign Prostatic Hyperplasia

Relative selectivity for receptor subtypes

- **Prazosin**: \(\alpha_{1A} = \alpha_{1D} = \alpha_{1B}\)
- **Terazosin**: \(\alpha_{1A} = \alpha_{1D} = \alpha_{1B}\)
- **Doxazosin**: \(\alpha_{1A} = \alpha_{1D} = \alpha_{1B}\)
- **Alfuzosin**: \(\alpha_{1A} = \alpha_{1D} = \alpha_{1B}\)

\[\begin{align*}
\text{Piperazinyl quinazolines} \\
\text{Benzenesulfonamide} \\
\text{Indole}
\end{align*}\]

- **Tamsulosin**: \(\alpha_{1A} = \alpha_{1D} > \alpha_{1B}\)
- **Silodosin**: \(\alpha_{1A} > \alpha_{1D} > \alpha_{1B}\)

Administration: all **ORAL**
Pharmacology: Genitourinary
Benign Prostatic Hyperplasia

PK Properties: *CLASS: Piperazinyl quinazolines*

Prazosin
- Bioavailability: 40-80% *(VARIABLE)*
- HALF-LIFE: 3 hr *(SHORT)*
- Duration: 7-10 hr
 (Thus, BID Dosing)

Terazosin
- Bioavailability: 90%
- HALF-LIFE: 12 hr
- Duration: 18-24 hr

Doxazosin
- Bioavailability: 65%
- HALF-LIFE: 22 hr
- Duration: >24 hr*
 (BOTH normal and ER tab have similar duration)

Alfuzosin
- Bioavailability: 50% *(WITH FOOD, only 25% if fasting!)*
- HALF-LIFE: 10 hr
- Duration of action: >24 hr*
 (extended release tab ONLY)
Pharmacology: **Genitourinary**

Benign Prostatic Hyperplasia

PK Properties: *CLASS: Benzenesulfonamides*

Tamsulosin
- Bioavailability: >90% (*FASTING*)
 (reduced to 60% by food)
- Absorption: **SLOW**
- HALF-LIFE: 5 hr
- APPARENT half-life (absorption included): 14 hr
- Duration of action: ~ 24 hr

PK Properties: *CLASS: Indoles*

Silodosin
- Bioavailability: 32% (*low*)
- HALF-LIFE: 5-20 hr (*variable*)
- Duration of action: ~ 24 hr
Pharmacology: Genitourinary
Benign Prostatic Hyperplasia

Metabolism / Excretion

All drugs are major CYP3A4 substrates

For the following, AVOID STRONG CYP3A4 inhibitors:

• Alfuzosin
• Silodosin
• Tamsulosin

Terazosin is the LEAST metabolized
30% excreted as parent drug (both urine, feces)

Silodosin is metabolized partly by GLUCURONIDATION;
AVOID UDP-glucuronyltraferase inhibitors:

• Probenecid
• Valproic acid
• Fluconazole
Pharmacology: Genitourinary
Benign Prostatic Hyperplasia

Adverse Effects

First-dose effect: orthostatic hypotension
 • syncope
 • reflex tachycardia
Effect minimized by dosing at bedtime
Also by minimizing first dose

More α_{1A}-selective drugs: Tamsulosin, Silodosin are **LESS likely** to cause hypotension
(but also lack the BP benefits of the
 Piperazinyl quinazolines)

Sulfa Allergy: Use caution with Tamsulosin
 • rash, hives, or worse conditions
Pharmacology: Genitourinary
Benign Prostatic Hyperplasia

Adverse Effects

Reduced/retrograde ejaculation:
• Caused by relaxation of bladder neck
• Ejaculate follows ‘path of least resistance’
• Enters bladder, flushed out with urine
• Affects 15-30% of patients
• Dose-related effect

VERY RARE: priapism
• long-lasting and ‘inappropriate’ erection

enough already!
Affects only about 1:50,000 patients
Pharmacology: **Genitourinary**

Benign Prostatic Hyperplasia

Other receptors and their responses in the prostate

<table>
<thead>
<tr>
<th>Receptors</th>
<th>Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-Adrenoceptors</td>
<td>contraction</td>
</tr>
<tr>
<td>β-Adrenoceptors (subtypes)</td>
<td>relaxation</td>
</tr>
<tr>
<td>5-HT$_2$A/5-HT$_2$c receptors</td>
<td>contraction</td>
</tr>
<tr>
<td>Endothelins (ET$_A$ and ET$_B$)</td>
<td>contraction</td>
</tr>
<tr>
<td>Tachykinin Nk$_2$ receptors</td>
<td>contraction</td>
</tr>
<tr>
<td>Androgen receptors</td>
<td>modulate growth of prostate</td>
</tr>
</tbody>
</table>

Future drugs may exploit the presence of other receptors present in prostate
Pharmacology: Genitourinary
Benign Prostatic Hyperplasia

Therapeutic Approaches:

5α-reductase Inhibitors
- Finasteride (Proscar®)
- Dutasteride (Avodart®)

Combinations
- Tamsulosin/Dutasteride (Jalyn®)

Gene Expression

```
T       DHT
5α-reductase
```

```
AR
AR
Gene Expression
```

"Androgen Response Element"
Pharmacology: Genitourinary
Benign Prostatic Hyperplasia

Type I 5α-reductase

Type II 5α-reductase

Skin, Liver

Testicles

Prostate

Hair follicles

Finasteride

Dutasteride

1/3 of DHT

2/3 of DHT

T

T

13
Pharmacology: Genitourinary
Benign Prostatic Hyperplasia

Prostate Cancer Prevention Trial (PCPT)
- National Cancer Institute (NCI)
- South West Oncology Group (SWOG)

18,882 men, 55 years or older
Recruited: 1994-97
5 mg/day finasteride or placebo
Duration: 7 years
Conclusion: 25% reduction in CaP
Pharmacology: Genitourinary

Benign Prostatic Hyperplasia

BOTH Finasteride and Dutasteride are approved for *treating* BPH and *preventing* CaP

NEITHER is approved for *treating* CaP
(CaP is treated with: LHRH agonists/antagonists + AR antagonists)

Common adverse effects:
- Breast enlargement (gynecomastia), tenderness
- Decreased libido
- Impotence
- Ejaculatory disorder
Pharmacology: Genitourinary
Benign Prostatic Hyperplasia

Precaution:

- **Finasteride**: possibility of birth defect (*hypospadias*) in fetus. Pregnant women should not handle *crushed* tablets.
- There is *some* concern about finasteride in *semen*, BUT:

Effects of Finasteride, a Type 2 5-Alpha Reductase Inhibitor, on Fetal Development in the Rhesus Monkey (*Macaca mulatta*)

1Department of Safety Assessment, Merck Research Laboratory, West Point, Pennsylvania 19486
2Department of Enzymology, Merck Research Laboratory, Rahway, New Jersey 07065
3Developmental Laboratories, Merck Research Laboratory, Hoddesdon, Hertfordshire EN10 0UB, England
4California Regional Primate Research Centre, University of California, Davis, California 95616
5Department of Pediatrics, University of California, Davis, California 95616
6Department of Radiology, University of California, Davis, California 95616

Pregnant female monkeys were administered, throughout pregnancy, **daily doses of finasteride**, within and above the range of semen levels of the drug, and effects on the offspring were assessed. No abnormalities were observed in the offspring, even at doses 60–750 times levels found in the semen of men treated with recommended doses of finasteride, suggesting a **large safety margin** for potential human exposures (from semen).
Pharmacology: Genitourinary
Benign Prostatic Hyperplasia

PK properties (main differences in color)

<table>
<thead>
<tr>
<th>Finasteride</th>
<th>Dutasteride</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Admin: ORAL</td>
<td>• Admin: ORAL</td>
</tr>
<tr>
<td>• Bioavail: 60%</td>
<td>• Bioavail: 60%</td>
</tr>
<tr>
<td>• V_d: 76 L</td>
<td>• V_d: 300-500 L</td>
</tr>
<tr>
<td>• log P: 3.03 (LESS hydrophobic)</td>
<td>• log P: 5.09 (MORE hydrophobic)</td>
</tr>
<tr>
<td>• Metabolism: CYP3A4</td>
<td>• Metabolism: CYP3A4</td>
</tr>
<tr>
<td>Metabolites:</td>
<td>Active metabolite:</td>
</tr>
<tr>
<td>Not very active</td>
<td>6-hydroxydutasteride</td>
</tr>
<tr>
<td>• Half-life: 6 h</td>
<td>• Half-life: 5 wk</td>
</tr>
<tr>
<td>• Excretion: feces, urine</td>
<td>• Excretion: feces, urine</td>
</tr>
</tbody>
</table>
Pharmacology: Genitourinary

Erectile Dysfunction

Etiology of ED (not always mutually exclusive)

(1) Failure to initiate
 (psychogenic, endocrinologic, or neurogenic)

(2) Failure to fill
 (arteriogenic)

(3) Failure to store blood within lacunar network
 (venoocclusive dysfunction)
Erectile stimuli increase blood flow into the cavernosal spaces, causing erection. Blood collects in the corpus cavernosum, increasing ‘cavernous pressure’

Drainage occurs via surrounding veins. Vein compression against tunica albuginea during erection prevents this drainage.
Pharmacology: Genitourinary

Erectile Dysfunction

- cavernosal arteries
- cavernosal spaces
- helicine arteries
- venules
- shunt
- cavernosal artery

Flow shunt to:
- cavernosum

Sympathetic tone (α_1) → vasoconstriction

Parasympathetic innervation → vasodilation

Relative amount of blood flow

FLACCID

- shunt

ERECT

- shunt
Pharmacology: Genitourinary

Erectile Dysfunction

Parasympathetic innervation of the corpus cavernosum

NANC
“non-adrenergic, non-cholinergic”

arginine \rightarrow NOS \rightarrow NOS

NET RESULT:
Hyperpolarization, Relaxation

Pelvic ganglia

Nerve ending

NO \rightarrow sGC

GTP \rightarrow cGMP

PDE5

K$^+$

myosin light chain phosphatase
Pharmacology: Genitourinary

Erectile Dysfunction

Therapeutic Approaches:

Phosphodiesterase type 5 inhibitors (for ED)

- **Avanafil** (Stendra®) - 2012
- **Sildenafil** (Viagra®) - 1998
- **Tadalafil** (Cialis®) - 2003
- **Vardenafil** (Levitra®) - 2003

Typical response rate: 60-80%
(20-40% show no improvement)

FDA approval for pulmonary hypertension:
- **Sildenafil** (Revatio®)
- **Tadalafil** (Adcirca®)

Diagram:

- GTP → NO → SGC → cGMP → PDE5 → Inhibitor → SMC relaxation
- GMP → PDE5 → Inhibitor

- Typical response rate: 60-80%
(20-40% show no improvement)
Pharmacology: Genitourinary
Erectile Dysfunction

PK Properties

Avanafil (Stendra®)
- Bioavailability: Not report.
- HALF-LIFE: 5 hr
- Onset: 10 min-0.5 hr
- Duration: 4-6 hr

Tadalafil (Cialis®)
- Bioavailability: 35%
- HALF-LIFE: 15-18 hr
- Onset: 1-2 hr
- Duration: up to 36 hr

Sildenafil (Viagra®)
- Bioavailability: 20-60%
- HALF-LIFE: 4 hr
- Onset: 0.5-1 hr
- Duration: 4-12 hr

Vardenafil (Levitra®)
- Bioavailability: 15%
- HALF-LIFE: 4-5 hr
- Onset: 0.5-1 hr
- Duration: 4-6 hr
Pharmacology: Genitourinary
Erectile Dysfunction

PK Properties

FOOD:

Sildenafil, Vardenafil: ONSET (absorption rate) SLOWED by food (especially fatty meals) – food does NOT affect AUC

Avanafil, Tadalafil: take without regard to food

METABOLISM:

All drugs are **MAJOR CYP3A4 substrates**
Pharmacology: Genitourinary
Erectile Dysfunction

Common Side Effects (5-20%):

• Headache
• Facial flushing
• Dyspepsia
• Congestion

More common with Tadalafil:
• Myalgia, back pain

Precautions:

• Do NOT take with NITRATES (may cause severe hypotension, MI)
• Use Caution in elderly
• Use Caution with α_1 blockers

Sildenafil also inhibits PDE6 (retina) and may cause visual disturbances:
Blue hue (Cyanopsia), brightness, blurriness
Also possible (but more rare) with Vardenafil
Pharmacology: Genitourinary
Urinary Incontinence

Involuntary loss of urine that is *sufficient to be a problem*

- 13 million Americans affected
- More frequent in elderly persons
- Women are affected twice as often as men

Detrusor muscle
- Parasympathetic
- M_2, M_3 - VOIDING

Internal sphincter
- Sympathetic
- α_1 - STORAGE

External sphincter
- Skeletal
- nACh - STORAGE

Trigone muscle
- Sympathetic
- α_1 - STORAGE
Pharmacology: Genitourinary
Urinary Incontinence

Therapeutic Approaches:

Antimuscarinics,
Indirect anticholinergics (botulinum toxin A, Botox®)

GOAL: Relax detrusor muscle (INHIBIT VOIDING)

α₁ agonists – antihypotensives (off-label)
Midodrine

Antidepressants (off-label)
Imipramine (Tofranil®)
Duloxetine (Symbalta®)

GOAL: Contract internal sphincter, trigone muscles
(ENHANCE STORAGE)
Pharmacology: Genitourinary
Urinary Incontinence

ANTIMUSCARINICS

Darifenacin (Enablex®)
*Fesoterodine (Toviaz®)
Flavoxate (Urispas®) - also used as anti-spasmotic
Oxybutynin (Ditropan®) - also used as anti-spasmotic
Propantheline (Pro-Banthine®) - anti-spasmotic for GI and GU
Solifenacin (Vesicare®)
Trospium (Sanctura®)
Tolterodine (Detrol®)

*Newest drug (2008) Pro-drug (hydrolyzed in body to SAME active metabolite as tolderodine) = 5-hydroxymethyl tolterodine (BOTH are Pfizer drugs) Tolterodine = 1998
Pharmacology: Genitourinary

Urinary Incontinence

M_3-selective:
- **Darifenacin** (Enablex®)
- **Solifenacin** (Vesicare®)

Side effects of antimuscarinics

Common (M_3):
- Dry mouth (xerostomia) - common reason to quit
- Cough
- Constipation

For the ‘nonselective’ antimuscarinic drugs
- Tachycardia (M_2, Vagus nerve)
- Drowsiness, confusion – in elderly! (M_1, CNS)
 (except trospium, has + charge, no access to CNS)
Pharmacology: Genitourinary
Urinary Incontinence

PK Properties

- **Darifenacin** $t_{1/2} = 16$ hr; Bioavailability = 20%; CYP3A4
- **Fesoterodine** $t_{1/2} = 7$ hr; Bioavailability = 52%; (prodrug Activated by nonspecific esterases; Eliminated by CYP3A4)
- **Solifenacin** $t_{1/2} = 45-68$ hr; Bioavailability = 90%; CYP3A4
- **Trospium** $t_{1/2} = 20$ hr; Bioavailability = 10%; RENAL (60% unchanged)
- **Tolterodine** $t_{1/2} = 10$ hr; Bioavailability = 77% ([take with food](#)); Activated by CYP2D6, Eliminated by CYP3A4)
Pharmacology: **Genitourinary**

Urinary Incontinence

Botulinum toxin A (Botox®)

- Indirect mechanism: inhibits release of ACh
- **Paralyzes** muscle
- Local injections into detrusor muscle
- **CAUTION:** Overdose may cause urinary retention
Pharmacology: Genitourinary

Urinary Incontinence

ADRENERGIC AGONISTS

Midodrine – α_1 selective
Increases tone of trigone muscle and internal sphincter

Adverse effects: insomnia, elevated blood pressure, exacerbation of myocardial ischemia, cardiac arrhythmias

ANTIDEPRESSANTS

Mechanism: Block NE reuptake

- Enhance urine storage reflex
- Increase sympathetic tone of the trigone muscle and internal sphincter

Imipramine: tricyclic antidepressant, multiple effects (including NE) (double mechanism: is also antimuscarinic!)

Duloxetine – SNRI: blocks the reuptake of NE and serotonin
Pharmacology: Genitourinary

Urinary Retention

For post-surgical, post-partum, and diabetic (neuropathic) inability to urinate voluntarily

Bethanechol (Urecholine®)
Oral tablets
or
CHOLINERGIC AGONIST
(Unlike ACh, bethanechol is NOT hydrolized by cholinesterases)

Side Effects:
- Hypotension, reflex tachycardia
- Headache (cerebral vasodilation)
- GI cramps
- Bronchoconstriction
- Lacrimation, Myosis

May cause painful spasms, treat with Anticholinergics:

Flavoxate (Urispas®)
Oxybutynin (Ditropan®)
Propantheline