Introduction to Pharmacokinetics

University of Hawai‘i Hilo Pre-Nursing Program
NURS 203 – General Pharmacology
Danita Narciso Pharm D
Learning objectives

- Understand compartment models and how they effects drug concentrations
- Understand the two main parameters of pharmacokinetics (Vd and Cl)
- Understand ADME and the characteristics of each
- Know how to estimate how much drug remains after X hours after administrations
- Compare and contrast the 2 phases of metabolism
- Understand how enzyme inhibition and induction work as well as how that affects drugs and prodrugs
- Know the sites of drug excretion/elimination
- Know the key “Plasma level and dose” terms
- Know the parameters of variability in drug action
- Differentiate between an allergy and intolerance
Pharmacokinetics

- What is pharmacokinetics
 - The study of the absorption, distribution, metabolism, and eliminations of drugs with respect to time (ADME)
 - Two main parameters
 - Volume of distribution
 - Clearance
 - 3rd parameter – half life
Volume of distribution (Vd)

- Vd is a theoretical space – measured in liters
 - Average blood volume = 3 liters
 - Vd could be greater than 3 liters, how?
 - 50 mg of drug in your body
 - 5 mg in the blood
 - Vd = 10 L

\[V_D = \frac{\text{total amount of drug in the body}}{\text{drug blood plasma concentration}} \]
Volume of distribution (Vd)

Factors Increasing Vd
- Lipophilic drugs
- Decreased plasma protein binding
- Increased tissue binding

Factors Decreasing Vd
- Hydrophilic drugs
- Increased plasma protein binding
- Decreased tissue binding
Compartment Models

One compartment models
- Plasma
- Highly perfused organs
 - Liver & kidneys

Two compartment models
- Peripheral tissues
Compartmental models

- IM Injection → Muscle tissue
- Oral drug → GIT
- IV Injection → Central compartment

Absorption:
- Muscle tissue → Central compartment
- GIT → Central compartment

Elimination:
- Elimination in feces
- Elimination of metabolite
- Elimination of parent drug

Distribution:
- Central compartment → Peripheral compartment
Clearance

- Clearance: Portion of the drug removed from the volume of distribution per unit time (L/hr)

- Mechanisms for clearance (can be a combination)
 - Renal elimination
 - Hepatic metabolism
 - Biliary excretion
Clearance – factors that effect

- Rates
 - Absorption rates
 - IV – fast
 - Oral – slow
 - Rectal - sporadic
 - Distribution rates
 - Compartment models – 1 vs. 2
 - Metabolism rates
 - Biotransformation, or metabolites
 - Elimination rates
 - Involves 2 variables: drug concentration and time
 - Elimination rate = -dC/dt
Elimination rates

- Rates of elimination
 - First order
 - The amount of drug removed over time changes
 - The fraction of drug removed remains constant.
 - Concentration dependent
 - Higher concentration = higher rate of removal
 - Lower concentration = lower rate of removal
 - Half-life
 - Amount of time for the drug concentration to decrease by ½ in the volume of distribution
 - 100 mg of drug x was given. Drug x has a half life of 2 hours. In 6 hours how many mgs of drug x would be remaining?
 - Zero order
 - Amount of drug removed per unit time remains the same
 - Fraction of drug removed decreases
 - Concentration independent
 - Concept of half-life does not apply
 - Mixed order
Elimination rates

- **Zero order**
 - Amount of drug removed per unit time remains the same
 - Fraction of drug removed decreases
 - Concentration independent
 - Concept of half-life does not apply

- **Mixed order**
 - When enzymes play a role in elimination
 - Mixture of first order elimination and zero order
 - First order, enzyme saturation, Zero order
ADME – finally!

- Absorption
- Distribution
- Metabolism
- Excretion
Absorption

- Absorption: Transfer of drug from the site of administration to systemic circulation

- Administration
 - Enteral: Through digestive system
 - Parenteral: Straight into the vasculature
 - Topical: Through the skin, tissues, or membranes

- Accomplished only AFTER drug makes it to systemic circulation
Absorption - Enteral route of administration

- Through the GI tract – tablets, capsules, suspensions, solutions & suppositories
 - Oral
 - Sublingual
 - Rectal

All swallowed medications

Liver

Heart

GI Tract

Sublingual

Rectal
Absorption - Parenteral route of administration

- Directly into systemic circulation – any administration “other than enteral”
 - IV
 - IM
 - IA
 - SC
 - Intrathecal
 - Intrasynovial
 - Intraosseous
 - Intraperitoneal

All parenteral medications

Heart
Liver
GI Tract
Absorption - Topical route of administration

- Directly onto the skin or tissue that is exposed to an area outside the body – liquids, powders, creams, ointments, gels, sprays patches
 - Transdermal
 - Ophthalmic
 - Vaginal
 - Intrauterine
 - Transmucosal – nasal (not orally)
Absorption - Make sure you know....

- Inhalation

- Heart
- Liver
- GI Tract
Absorption - Bioavailability

- Absorption can occur through various routes:
 - Enteral
 - Parenteral
 - Topical

Depends on:
- ROA
- Drug characteristics
- The body
Absorption - Bioavailability

ROA
- First pass metabolism
- Hydrophilicity vs. lipophilicity
- Current GI conditions
 - Food vs. empty stomach
 - pH
 - Enzymes availability
 - GI motility

Drug Characteristics
- Hydrophilicity vs. lipophilicity
- Dosage form
- pKa

The Body
- pH
- Blood flow
- Enzymes
Absorption - First Pass Effect

- Can effect orally administered drugs by up to 90% and more
 - Potency?
- Using a non-oral route and dosage form can help
 - Costly
 - Wrong drug characteristics
- Drug design can help – prodrugs
 - A drug that must undergo first pass metabolism before the active drug compound/molecule is released
Distribution

- Distribution – Relocation of the drug from the systemic circulation to its site of action
 - Movement between compartments
 - Exit the vasculature
Distribution

- Distribution depends on:
 - Size of the drug molecule
 - Lipid solubility
 - Drug pKa and the tissue/blood pH
 - Perfusion to site of action
 - Binding of plasma proteins
Distribution – more on plasma proteins

\[V_d = \frac{\text{Amount of drug in the body}}{\text{Concentration in the blood}} \]

- Vascular compartment
- Extravascular compartments of the body

\[V_d = \frac{20}{2} = 10 \]
\[V_d = \frac{20}{18} = 1.1 \]
\[V_d = \frac{200}{2} = 100 \]
Distribution – highly protein bound drugs (>90%)

- Drugs > than 90% protein bound
- May be displaced
 - Toxic effects
 - Displacing drug may interfere with clearance
- Reduced number of plasma proteins
 - Toxic effects
Break time
Learning objectives

- Understand compartment models and how they effects drug concentrations
- Understand the two main parameters of pharmacokinetics (Vd and Cl)
- Understand ADME and the characteristics of each
- Know how to estimate how much drug remains after X hours after administrations
- Compare and contrast the 2 phases of metabolism
- Understand how enzyme inhibition and induction work as well as how that effects drugs and prodrugs
- Know the sites of drug excretion/elimination
- Know the key “Plasma level and dose” terms
- Know the parameters of variability in drug action
- Differentiate between an allergy and intolerance
Metabolism

- Metabolism: The process of chemically inactivating a drug by converting it into a more water-soluble compound or metabolite that can then be excreted from the body.
- Two phases
Metabolism – Phase 1 metabolism

- Make a drug more water soluble by altering the molecule
 - Reactions of
 - Oxidation
 - Hydrolysis
 - Reduction

LEO says GER:

- Lose Electrons = Oxidation
 \[\overset{0}{Na} \rightarrow \overset{+1}{Na} + e^- \]
 Sodium is oxidized

- Gain Electrons = Reduction
 \[\overset{0}{Cl} + e^- \rightarrow \overset{-1}{Cl} \]
 Chlorine is reduced
Metabolism – Phase 2 (conjugation)

- Make a drug more water soluble by combining it with another molecule
 - Union of a drug with a more water soluble substance
 - Glycine
 - Methyl
 - Alkyl
 - Glucuronide
Metabolism – CYP450

- Metabolism of most lipid soluble drugs
 - Cytochrome P 450 isoenzyme family
 - 3A4
 - 2C9
 - 2C19
 - 2D6
 - 1A2
- Important terms
 - Substrate
 - Inducer
 - Inhibitor
Metabolism – Enzyme inhibition/induction

<table>
<thead>
<tr>
<th>Drug Administered at the same time</th>
<th>Substrate</th>
<th>Inducer</th>
<th>Inhibitor</th>
<th>Drug Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td></td>
<td></td>
<td>Decreased</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>X</td>
<td>Normal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drug Administered at the same time</th>
<th>Substrate</th>
<th>Inducer</th>
<th>Inhibitor</th>
<th>Drug Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td></td>
<td></td>
<td>Increased</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>X</td>
<td>Normal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drug Administered at the same time</th>
<th>Substrate</th>
<th>Inducer</th>
<th>Inhibitor</th>
<th>Drug Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td></td>
<td></td>
<td>Slight Decrease</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td></td>
<td></td>
<td>Slight Decrease</td>
</tr>
</tbody>
</table>

Patients won’t experience benefit

Patients might experience toxicity

Patients won’t experience benefit

Patients might experience toxicity
Metabolism – Enzyme inhibitors/inducers

Major Inhibitors - GPACMAN
- Grapefruit juice
- Protease inhibitors
- Amiodarone
- Cimetidine
- Macrolide Abx
- Aromatase inhibitors
- Non-dihydropyridine CCBs

Major Inducers - PSPORCS
- Phenytoin
- Smoking
- Phenobarbital
- Oxcarbazepine
- Rifampin
- Carbamazepine
- St. John’s Wort
What happens to drug concentrations of drug X if it is a substrate for isoenzyme 2C9 but that particular enzyme is “saturated” (no available enzyme binding sites)?

What is an active metabolite?

What is an inactive metabolite?
Excretion

- Excretion: The process by which drugs are removed from the body.
Excretion - Kidney

- Most important elimination route
- Percent
 - Unchanged
- Free/unbound/water soluble
- pKa and the pH of the urine
 - Weak base drug – excreted in acidic urine
 - Vitamin C
 - Weak acid drug – excreted in alkaline urine
 - Sodium bicarbonate
- Blocking sites of excretion
 - Probenecid to block the tubular excretion of penicillin

Renal Drug Excretion
Excretion - Lungs

- Volatile liquids or gas
- Increased pulmonary blood flow
 - Increase excretion in the lungs
- Decreased pulmonary blood flow
 - Decreased excretion
- Breathalyzer test
Excretion – GI tract

- Biliary excretion
 - Liver, bile, duodenum, to feces

- Enterohepatic recycling
 - Fat soluble substances
Excretion – Sweat/salivary/mammary glands

- Relatively unimportant part of excretion
- Sweat and salivary
 - Tend to cause adverse effects
 - Bad taste
 - Skin reactions
- Mammary glands
 - Drug in breast milk
 - Basic compounds
Plasma level and dose

Terms
- Duration of action
- Half-life
- Minimal effective concentration
- Onset of action
- Peak plasma level
- Steady state
- Termination of action
- Therapeutic range
- Toxic level
Variability in drug action – Average adult dose is based on a drug quantity that produces a certain effect in 50% of the population between age 18-65 and weigh 150 lbs.

- **Age**
 - Children
 - Water & naïve metabolic systems
 - Elderly
 - Less muscle, more fat, & warn out body systems

- **Gender**
 - Women
 - More fat & smaller size
 - Pregnant
 - Men
 - More muscle mass & larger size

- **Genetics**
 - Fast acetylators
 - Non functional enzymes
Drug allergy

- Allergy
 - 2nd exposure
 - Immunes system medicated
 - Anaphylaxis
 - Bronchospasm, hypotension, & death
 - Autoimmune response
 - Thrombocytopenia
 - Anemia
 - Angioedema, arthralgia, & fever
 - Inflammatory reactions
 - Skin rash

- Sensitivity/intolerance
 - Nausea
 - Diarrhea
 - Headache....
Questions