

AUTONOMIC NERVOUS SYSTEM

University of Hawai'i Hilo Pre-Nursing Program NURS 203 – General Pharmacology Danita Narciso Pharm D

LEARNING OBJECTIVES

Understand the basic function of the autonomic nervous system (ANS)

Know the neurotransmitters and receptors of each branch of the autonomic nervous system

Understand if a tissue or organ is being activated by a certain branch of the ANS what the resulting action would be

Understand how these two systems work in concert for daily living and situation of fight or flight

AUTONOMIC NERVOUS SYSTEM — WHERE IT FITS IN

AUTONOMIC NERVOUS SYSTEM — WHERE IT FITS IN

Parasympathetic NS

- Nicotinic
- Muscarinic
- Sympathetic NS
 Alpha
 Beta

Nerves

Carrying ACh
 Cholinergic
 Carrying NE

Adrenergic

Ganglion: Group of nerve cell bodies. Connects pre and post ganglionic nerves.

9

ACTIONS OF THE ANS - SNS

Think fight or flight

- Dilate pupils
 - Let in more light to see the bear
- Inhibit salivation
 - This is no time to be hungry
- Relax airways
 - ✤Increase O2 intake
- Increase heart rate
- *****....

Sympathetic System

Parasympathetic System

ACTIONS OF THE ANS - PNS

Think rest and digest

- Constrict pupils
 - Lessened sense of awareness
- Stimulate saliva
 - Let's eat
- Constrict bronchi
 - Don't need extra oxygen
- Decrease heart beat
 - Rest easy

ANS - NEUROTRANSMITTER TRANSMISSION

Cholinergic and adrenergic transmission – from start to finish

Synthesis

Storage

Release

Action

Inactivation

Synthesis & Storage

Propagation

- ✤ Synthesis
 - Nerve terminal
 - Neurotransmitter
 - ✤ Adrenal medulla
 - ✤ Hormone
 - Epi and NE

Alpha receptors - excitatory

- Alpha 1
 - Postsynaptic nerve
 - Constrict
 - Vascular smooth muscle, prostate, pupillary dilator muscle
- ✤Alpha 2
 - Presynaptic nerve
 - Inhibit SNS outflow
 - Platelets, adrenergic and cholinergic nerve terminals, some vascular smooth muscle, and fat cells

Beta receptors – inhibitory

- Beta 1 heart
- Postsynaptic
- Increase rate & increase force of contraction

Beta 2 – lungs

- Postsynaptic
- Relax & increase glucose
- Lungs, liver, & vascular smooth muscle

Turning off the SNS

Reuptake

Monoamine oxidase (MOA)

Catechol-o-methyltransferase (COMT)

AUTONOMIC NERVOUS SYSTEM - SUMMARY

The 2 branches of the ANS are the SNS and PNS

The PNS and SNS balance each other out in terms of daily activities

Each of these systems has its own set of NTs and receptors with actions that promote its cause and attenuate the cause of its brother system

QUESTIONS

LEARNING OBJECTIVES — CHOLINERGIC Agonists

Know the receptor location and neurotransmitter involved in direct acting and indirect acting drugs of the cholinergic agonist class

Know the physiologic results of the activation or inhibition of those receptors

Know the dosage forms involved in nicotine replacement therapy (NRT)

>Know the toxic effects of cholinergic agonists & acetylcholinesterase inhibitors

CHOLINERGIC AGONIST

Parasympathomimetic

Receptors

Nicotinic

- Ganglia, adrenal medulla, skeletal muscle, brain
- Muscarinic
 - Cardiac and smooth muscle, gland cells, and nerve terminals

Remember, acetylcholine is the neurotransmitter for all preganglionic nerve fibers. Even those of the sympathetic nervous system.

MUSCARINIC RECEPTORS

Muscarinic receptors

Eye (lacrimal gland), saliva gland, heart, lungs, Gl tract, gallbladder, bladder, AND sweat glands (sympathetic effect) AND vascular smooth muscle (no PNS innervation)

MUSCARINIC AGONISTS - DIRECT ACTING

💠 Bethanechol

- Brand name: Urecholine
- Use: Ease urinary retention in the neurogenic bladder
- Dosage form: Oral tablet
- Distribution: Poorly absorbed and poorly distributed to CNS, concentrates in GI tract and bladder
- MOA: Increase bladder muscle tone, stimulated gastric motility
- Onset/Duration: 30-90 min/~1 hr (up to 6 hrs)

ADRs:

- Cardiovascular
- Hypotension, flushing, tachycardia
- CNS
 - ♦ Headache, malaise, seizure
- Dermatology
 - Sweating
- **∜**GI
 - Abd. cramps, diarrhea, burping, rumbly tummy, nausea, salivation, vomiting
- **∜**GU:
 - Urinary urgency
- *Ophthalmic
 - Miosis & lacrimation
- Respiratory
 - Bronchoconstriction/asthma
- Overdose: Treat with atropine

MUSCARINIC AGONIST— DIRECT ACTING

Pilocarpine

- Brand name: Salagen (oral)/Isopto Carpine (ophthalmic)
- Use: Xerostomia (cancer tx/sjogrens), glaucoma
- Dosage form: Tablet/solution & gel
- Distribution: Well absorbed and distributes into the CNS
- MOA: Increased salivation/miosis, decreased intraocular pressure
- Onset/Duration: 10-60 min/ 4-8 hrs (up to 12 hrs)
- Excretion: Kidney

- ADRs:
 - Cardiovascular
 - flushing
 - CNS
 - Headache
 - Dermatology
 - Rash, itching
 - **∜**GI
 - Nausea
 - **∻**GU:
 - Urinary frequency
 - Ophthalmic
 - ✤Double vision & lacrimation
 - Respiratory
 - ✤ Rhinitis

NICOTINIC RECEPTORS

Nicotinic receptors

Ganglia, adrenal medulla, skeletal muscle, and neuronal cells in the CNS

CNS effects

At therapeutic doses – mild alerting effect

At increased to toxic doses – tremor, stimulation of respiratory center, convulsions, & coma

Neuromuscular junction

- At therapeutic doses contraction of muscle
- At increased to toxic doses disorganized twitching, contraction of entire muscle, & paralysis

Peripheral nervous system

- Activation of the SNS and PNS at the same time
 - Cardiovascular effects mostly SNS effects
 - ♦GI tract mostly PNS effects

NICOTINIC AGONISTS – DIRECT ACTING

Nicotine (NRT)

- Use: Smoking cessation
- Dosage forms: Next slide
- Distribution: Lipophilic, distributes well to tissues
- Onset/duration: Fast/24 hour depends of dosage form
- Metabolism: Liver
- Excreted: Kidney
- ADRs: Depends on dosage form headache, nausea, throat irritation, cough, dyspepsia
- Toxicity: Very toxic. Lethal doses seen at 30-60 mg (5 cigarettes)

Varenicline (Chantix)

- Use: Smoking cessation
- Dosage forms: Tablets Can be dispensed in monthly packs
- Distribution: Well absorbed, not affected by food, 90% bioavailability
- Onset: Peak 3-4 hours
- Half-life: 24 hours
- Excretion: Urine 92% unchanged drug
- ADR's:
 - CNS HA, insomnia, abnormal dreams, suicide ideation, depression (can lead to d/c)
 - ♦GI: Nausea and vomiting

NRT – DOSAGE FORMS

Product	Nicotine Dosage	Adverse Effects	Usage
Patch	7, 14, or 21 mg/d	Skin reactions, vivid dreams, insomnia	Patch is placed on skin; user reduces dosage over time
Gum	2 mg or 4 mg every 1-2 h	Hiccups, nausea, jaw pain	User chews gum until it produces a tingling feeling, then parks gum between cheek and gum and chews with cravings
Lozenges	2- or 4-mg lozenge as needed with cravings	Hiccups, nausea, heartburn	User places lozenge in mouth where it dissolves slowly
Inhaler	4 mg/cartridge, 6-16 cartridges/d	Throat irritation, mouth irritation, nasal congestion, cough	Inhalation through mouthpiece delivers nicotine
Nasal spray	1 spray (0.5 mg) per nostril per hour as needed with cravings	Nasal irritation, nasal congestion, changes in taste and smell	Inserted and sprayed into each nostril; used to control cravings fast for heavy smokers

CHOLINERGIC AGONIST - INDIRECT ACTING

Neostigmine

-Pyridostigmine

Ambenonium

Physostigmine

Tacrine

Alzheimer's disease: Degradation of cholinergic nerves in CNS causing memory loss and cognitive function decline Causes not known: Efficacy of these drugs is modest and doses and use are limited by adverse effects.

Myasthenia gravis:

Autoimmune disease that

degrades nicotinic receptors

from autoantibodies causing

severe muscle weakness.

Donepezil

Rivastigmine

Galantamine

GI & GU disorders: Post operative ileus, congenital megacolon, urinary retention, reflux esophagitis

Antimuscarinic overdose: Plants, atropine, 1st generation antihistamines, & tricyclic antidepressants. Physostigmine completes with the antimuscarinic agent. Only used with high fever or supraventricular tachycardia

ACETYLCHOLINESTERASE INHIBITOR EFFECTS

Type of effects	Lower doses	Higher doses
Autonomic effects	 Nicotinic receptor activation SNS & PNS effects Decreased HR and BP Muscarinic receptor activation Miosis/impaired vision Bronchospasm/increased secretions Sweating/salivation Nausea/vomiting Diarrhea/abd cramps Urination 	 *Both SNS and PNS are activated but the effects of the PNS prevail. Patient will present with bradycardia, reduced cardiac output, variable blood pressure, severe bronchospasm, reduced respiratory function. SLUDGE Salivation, lacrimation, urination, diarrhea, Gl upset, emesis DUMBELS Diaphoresis & diarrhea, urination, miosis, bradycardia/bronchospasm/bronchorrhea, emesis, lacrimation, salivation
Central NS effects	 Nicotinic & muscarinic receptor activation Anxiety/confusion Tremors 	 Nicotinic & muscarinic receptor activation Tremors/seizures Coma Depression of respiratory center
Motor effects	 Nicotinic receptor activation on skeletal muscle Muscle twitching and weakness 	 Nicotinic receptor activation on skeletal muscle Paralysis Respiratory failure

ACETYLCHOLINESTERASE INHIBITOR OVERDOSE

Lethal – due to respiratory effects

Usually due to poisoning, chemical warfare, insecticides (organophosphates)

Route – skin or lungs.

First signs – Ocular symptoms followed by respiratory symptoms

Treatment

Ventilation

ATROPINE

Pralidoxime (reactivated enzymes)

QUESTIONS

LEARNING OBJECTIVES — CHOLINERGIC ANTAGONISTS

Know the receptor location and neurotransmitter involved in direct acting and indirect acting drugs of the cholinergic agonist class

Know the physiologic results of the activation or inhibition of those receptors

Know the general therapeutic uses for the cholinergic antagonists class of medications

Know antidotes

 \geq Know the toxicities related to the overuse of cholinergic antagonists

CHOLINERGIC ANTAGONISTS

Antimuscarinics and Antinicotinics

- Parasympatholytics
- Receptors
- Muscarinic
 - Cardiac and smooth muscle, gland cells, and nerve terminals
 - Sweat glands sympathetic

Nicotinic

♦Ganglia & skeletal muscle

ANTICHOLINERGICS

ANTICHOLINERGICS

Which of those pathways represents a direct acting drug and which represents an indirect acting drug?

ANTICHOLINERGICS – @ THE GANGLIA & ADRENAL MEDULLA

Decreased concentrations of epinephrine and norepinephrine & antagonism of acetylcholine

Parasympathetic

Constipation, tachycardia, dry mouth, nausea, vomiting, angina, urinary retention, impotence

Sympathetic

Decreased blood pressure, decreased release of epinephrine and norepinephrine, decreased sweating,

ANTICHOLINERGICS – @ THE GANGLIA & ADRENAL MEDULLA

When do we use these medications:

HYPERTENSIVE EMERGENCY – LIMITED

Dissecting aortic aneurysm

Controlled hypotension during surgery

Ganglion Blockers: Mecamylamine Trimethaphan

ANTICHOLINERGICS — NEUROMUSCULAR BLOCKERS

Antinicotinics – decreased binding of acetylcholine to skeletal muscle

Nondepolarizing & depolarizing

Both cause muscle paralysis but depolarizing causes ion channels to open allowing a brief period of muscle contraction.

Somatic effects

Blockade of voluntary & some involuntary muscle contraction

✤DO NOT CAUSE SEDATION. DO NOT PROVIDE RELIEF OF ANXIETY.

MUST BE GIVEN RESPIRATORY SUPPORT

ANTICHOLINERGICS — NEUROMUSCULAR BLOCKERS

When do we use these medications:

Surgery

Non-depolarizing

Rocuronium

- Competitive antagonist at nicotinic receptor
- Reversed by neostigmine
- Depolarizing
- Succinylcholine
 - Nicotinic agonist
 - Not metabolized at the synapse, receptor desensitization

Neuromuscular Blockers: Succinylcholine Rocuronium

ANTICHOLINERGICS — NEUROMUSCULAR BLOCKERS

Why CAN'T neostigmine be used as an antidote for succinylcholine?

Antimuscarinics – Decreased binding of acetylcholine to muscarinic receptors

Small dose effects

Reduced saliva, sweat, and bronchial secretions, increase heart rate, inhibit accommodation

Large dose effects

 inhibit micturition, decreased digestive muscle tone, & decreased gastric motility

Prototype drug - Atropine

Eye

Dilation of pupil, relaxation of ciliary muscle

Use with care in patients with glaucoma

Mechanism for increasing intraocular pressure???

Even eye drops can cause systemic effects

Skin and mucous membranes

Decreased sweating

Dry & hot skin

Decreased glandular secretions
 Dry mouth, nose, pharynx, and bronchi

Respiratory system

- Decreased secretion pharynx, nose, and bronchi
- Relaxation of smooth muscles of airway

Breathe more easily

Cardiovascular system effects

Low dose

Slightly slowed heart rate – from depression of the cardiac center in the brain

↔ High dose

Increase in heart rate due to vagal verve blockage, facial redness

GI tract

Little effect on secretions
Stomach, intestinal, pancreatic, gallbladder

Urinary tract

Muscles of the urinary system
 Relaxation of detrusor

Greater effects on food movement
 Peristalsis, Gl tone

Sphincters of the urinary system
 Constricted

Relaxation of fundus and ureter

Dose response

Low doses
 Little to no adverse effect

CNS conditions

Parkinson's disease
 Decreased tremor

Respiratory depression
 Increased breath rate and deeper breathing

High doses

Restlessness, wakefulness, talkativeness...leading to delirium, stupor, and coma

When do we use these medications?

Dilate eye

Ophthalmic exam

Motion sickness

Central action – depresses vestibular function

IBS & diarrhea
Slow GI motility

Can be combined with opioids

Urinary disorders

Decrease urinary leakage and incontinence

Parkinson's

Decrease tremor & oral secretions

Muscarinic antagonists: Scopolomine, benztropine, ipratropium, tiotropium, tolderodine, solifenacin, darfenacin

QUESTIONS

LEARNING OBJECTIVES — ADRENERGIC AGONISTS

Know the receptor location and neurotransmitter involved in direct acting and indirect acting drugs of the cholinergic agonist class

Know the physiologic results of the activation or inhibition of those receptors

Know what substances are considered to be catecholamines

>Understand the differences in binding affinities of the catecholamines and the physiologic results of that

Know the receptor locations

>Understand shock and the first choice treatment of that condition

SYMPATHETIC NERVOUS SYSTEM

Neurotransmitters (catecholamines)
 Epinephrine, Norepinephrine, Dopamine

SYMPATHETIC NERVOUS SYSTEM

Neurotransmitters (catecholamines)
 Epinephrine, Norepinephrine, Dopamine

SYMPATHETIC NERVOUS SYSTEM — DIRECT ACTING AGONISTS

SYMPATHETIC NERVOUS SYSTEM — DIRECT ACTING AGONISTS (ALPHA)

Clonidine

> Receptor affinity

 $\succ \alpha_2 > \alpha_1 >>>> \beta$

>Uses: Hypertension, migraine prophylaxis, cancer pain

>Centrally decreases blood pressure by decreasing sympathetic outflow

>ADRs: Xerostomia, skin rash, drowsiness

Phenylephrine

Receptor affinity

 $\succ \alpha_1 > \alpha_2 >>>> \beta$

Can be used to raise blood pressure – REFLEX DECREASE IN HEART RATE, primary use as a decongestant or used to dilate pupils

>ADRs: Nasal burning and discharge – local effects

SYMPATHETIC NERVOUS SYSTEM — DIRECT ACTING AGONISTS (ALPHA & BETA)

Epinephrine & Norepinephrine

> Epinephrine agonist of all 3 receptors

Modest change in blood pressure

>Norepinephrine = low affinity towards beta 2

>Large increase in blood pressure

> Epi, NE, & Dopamine – DO NOT CROSS BBB

A₁ Vasoconstriction = Increased blood pressure

B₂ Vasodilation = Decreased blood pressure

B₁ Increased cardiac output (increased contractility &rate) = Increased blood pressure

SYMPATHETIC NERVOUS SYSTEM — DIRECT ACTING AGONISTS (ALPHA & BETA)

Epinephrine

Uses: Allergic reaction, hypotension/shock, pupil dilation during eye surgery

ADRs: Arrhythmia, anxiety, dry throat, urinary retention

Norepinephrine

Uses: First choice vasopressor in treatment of sepsis an septic shock, severe hypotension after fluid replacement

ADRs: Arrhythmia, anxiety, and difficulty breathing

*Levophed

SYMPATHETIC NERVOUS SYSTEM — DIRECT ACTING AGONISTS (ALPHA & BETA)

Why is NE the first choice in the treatment of septic shock?

SYMPATHETIC NERVOUS SYSTEM — DIRECT ACTING AGONISTS (BETA AGONISTS)

Isoproterenol

 $\beta_1=\beta_2>>>>\alpha$

- Non-selective beta agonist
- Potent cardiac stimulant, increases cardiac output
- Vasodilator, decreases arterial pressure
- Causes bronchodilation
- Uses: Bronchospasm associated with asthma, emphysema, and bronchitis
- ADRs: Arrhythmia, anxiety, red tinged saliva

Tertbutaline

$$\beta_2 > \beta_1 >>> \alpha$$

- Selective beta-2 agonists
- Cause bronchodilation
- Relaxes uterine wall
- Uses: Bronchoconstriction, premature labor
- ADRs: Increased heart rate, nervousness, trembling, headache, dry mouth

SYMPATHETIC NERVOUS SYSTEM — DIRECT ACTING AGONISTS (BETA AGONISTS)

Dobutamine

$\beta_1 > \beta_2 >>> \alpha$

- Selective beta-1 agonist
- Cardiac stimulant
- Uses: Cardiac decompensation (heart failure), sepsis
- ADRs: Chest pain, palpitations, PVCs, headache, nausea

Albuterol

$$\beta_2 > \beta_1 >>> \alpha$$

- Selective beta-2 agonists
- Cause bronchodilation
- Uses: Bronchospasm in asthma & COPD & hyperkalemia
- ADRs: Tachycardia, excitement, nervousness, tremor

SYMPATHETIC NERVOUS SYSTEM — DIRECT ACTING AGONISTS (DOPAMINE AGONISTS)

Dopamine $D_1 = D_2 >> \beta_1 >> \alpha_1$

- Vasoconstriction and increase in peripheral vascular resistance.
- Reduced urinary output
- Vasodilation of the renal and splanchnic arteries
- Directly Increase cardiac contractility (beta 1)
- Indirectly Release NE from storage site in neuron (beta 1)

Increase stroke volume and cardiac output/HR mild increase at low doses **DILATION OF RENAL, MESENTERIC, CORONARY, &CEREBRAL BLOOD VESSELS (alpha 1)

Uses: Adjunct in the treatment of shock & facilitate diversis and preserve renal function

ADRs: Chest pain, arrhythmia, anxiety, headache, nausea, vomiting

SYMPATHETIC NERVOUS SYSTEM — INDIRECT ACTING AGONISTS — RELEASING AGENTS

Amphetamine, methamphetamine, methylphenidate

- Elevates mood and alertness
- Decreased appetite
- Uses: Amphetamine & methamphetamine
 - Drugs of abuse
- Uses: Methylphenidate
 - ADHD potential for abuse
- ADRs: Addiction, tachycardia, blurred vision, headache, insomnia, skin rash, weight loss, dry mouth
- Lipophilic and can penetrate the BBB

SYMPATHETIC NERVOUS SYSTEM — INDIRECT ACTING AGONISTS — RELEASING AGENTS & DIRECT BINDING

Ephedrine

- Plant derived and has mild stimulant effect
- Long duration of action
- Non selective
- Uses: Primarily as a nasal decongestant, but also stress incontinence in women and pressor effects
- ADRs: Hypertension, tachycardia, nausea and vomiting, tremor, and anxiety

 ****pseudoephedrine – indirect action only but still a nasal decongestant and can reduce stress incontinence in women

SYMPATHETIC NERVOUS SYSTEM — INDIRECT ACTING AGONISTS — REUPTAKE AND MAOI_s

Cocaine

Local anesthetic properties/major drug of abuse

- Inhibits the reuptake of catecholamine at the cleft
- CNS effect substantial

Phenelzine

Monoamine oxidase inhibitor and increases storage supply of norepinephrine in CNS

- Uses: Depression, bulemia
- ADRs: Orthostatic hypotension, headache, xerostomia, weight gain, sexual dysfunction
- Tyramine foods dangerous hypertension
 - Pickled, cured meats, beer, aged cheese

QUESTIONS

LEARNING OBJECTIVES — ADRENERGIC ANTAGONISTS

Know the receptor location and neurotransmitter involved in direct acting and indirect acting drugs of the cholinergic agonist class

Know the physiologic results of the activation or inhibition of those receptors

Know the receptor locations

Know the physiologic results of administering a selective agent over a non-selective agent

>Understand why certain agents within a drug class might be used for a particular indication and the reasons for the selection of that medication

>Understand reflex tachycardia

SYMPATHETIC NERVOUS SYSTEM — ADRENERGIC ANTAGONISTS

SYMPATHETIC NERVOUS SYSTEM — DIRECT ACTING ANTAGONISTS

SYMPATHETIC NERVOUS SYSTEM — MIXED ALPHA ANTAGONISTS

Phentolamine

 $\bullet \alpha_1 = \alpha_2$

- •Very non-selective and can even bind to muscarinic, H1, and H2 receptors.
- • α_1 blocked, causing vasoconstriction
- • α_2 blocked, allowing the continued release of catecholamine to bind beta 1
- •Baroreflex
- •Poor oral absorption

- •Uses: Pheochromocytoma & erectile dysfunction
- •ADRs: Tachycardia, arrhythmia, MI, GI stimulation (diarrhea & increased gastric acid)

SYMPATHETIC NERVOUS SYSTEM — MIXED ALPHA ANTAGONISTS •Uses: Pheochromocytoma, and surgery

Phenoxybenzamine

 $\alpha_2 > \alpha_1$

- Blocks alpha 1 & 2 as well as receptors of acetylcholine, H1, and serotonin receptors
- •Decreases blood pressure especially when HTN caused by increased SNS tone
- •Baroreflex and some alpha 2 blockade = potential increase in cardiac output

- prep
- •ADRs: Postural hypotension, tachycardia, stuffy nose, sexual dysfunction, CNS fatigue, nausea, sedation

Prazosin, doxazosin, tamsulosin, terazosin, alfuzosin

- •Uses: BPH & moderate hypertension
- •Alpha 1 >>>>> alpha 2
- •All generally work by blocking alpha 1 receptors in the smooth muscle arteries, veins, and prostate. However, there are some differences within the class
- •ADRs: Postural hypotension, reflex tachycardia, retention of fluid and salt, sexual dysfunction

Prazosin

Use: Hypertension & PTSD

May increase HDL and decrease LDL

Tamsulosin

Use: BPH, chronic urinary obstruction

Little effect on BP

- Useful in patients who may have experienced postural hypotension with other alpha 1 blockers
- Greater selectivity for alpha 1 a vs alpha 1 b (alpha 1 a most important for prostate)

Yohimbine

Uses: Reverse sedation in dogs and deer

Other uses: Hallucinogen, aphrodisiac, erectile dysfunction, and reduced libido in women

MOA: Centrally acing alpha 2 antagonist to increase sympathetic outflow ADRs: Nausea/vomiting, tachycardia, anxiety, agitation, tremor, sweat, renal failure, arrhythmia, seizure...

No known antidote but benzodiazepines may help in toxicities associated with agitation, hypertension, and tachycardia

SYMPATHETIC NERVOUS SYSTEM — DIRECT ACTING ANTAGONISTS — BETA ANTAGONISTS

Pure Antagonists

- Atenolol
- Carveliolol
- Propranolol

Partial Agonists (ISA)

- Acebutolol
- Labetalol
- Pindolol

Inverse agonists

- Metoprolol
- Bisoprolol

- Partial agonist
 - Exerts less than full receptor effects
 - Active state >Inactive state
- Inverse agonist
 - Less activity than when receptor not being acted on by substance (constitutive activity)
 - Inactive state > active state

IN GENERAL: Decrease in blood pressure, cardiac output (decrease in heart rate and contractility, lower blood pressure without creating hypotension

- Most are lipophilic, large Vd, well absorbed
- Some cross the BBB
- Some are metabolized in the liver and some are excreted in the urine as unchanged drug
- Upon administration rise in PVR, overtime (chronic use) decrease in PVR
- Blockade of beta 2
 - Bronchoconstriction
 - Decreased lipolysis
 - Decreased blood glucose
- ADRs:
 - Sedation, sleep disturbances, depression, bronchospasm
- Taper

Propranolol

- Non-selective
- Very lipophilic
- Uses: Hypertension, coronary artery disease, migraine prophylaxis, performance anxiety
 - Can cross the BBB
 - Extensive first pass metabolism (CYP 2D6 & 1A2)
 - Local anesthetic properties
 - May also be used for hyperthyroidism (thyroid storm excessive catecholamine action on the heart)

Metoprolol

- Inverse Agonist
- Moderately lipophilic
- •Extensive first pass effect (CYP2D6)
- •Local anesthetic
- •First choice BB in heart failure

Nadolol

- Pure Antagonist
- Not metabolized
- Longest half life
 - May increase with kidney disease

Labetalol

Hypertension in pregnancy

 Has ISA – less risk for bradycardia (reduced sympathetic response)

NOT TO BE USED IN ACUTE CONGESTIVE HEART FAILURE

Timolol / Betaxolol

Glaucoma

- Reduction in aqueous humor by ciliary body
 - Decreased production
- Timolol non-selective
 - Bronchospasm
- Betaxolol selective
 - First choice

SYMPATHETIC NERVOUS SYSTEM — BETA ANTAGONISTS - CONSIDERATIONS

SYMPATHETIC NERVOUS SYSTEM — BETA ANTAGONISTS — MORE CONSIDERATIONS

Normal lung tissue

Asthma

QUESTIONS

