Diabetes - Oral Agents Pharmacology

University of Hawai'i Hilo Pre-Nursing Program

NURS 203 - General Pharmacology

Danita Narciso Pharm D

Learning Objectives

- Understand the role of the utilization of free fatty acids in diabetic ketoacidosis
- Understand the role and actions of insulin
- Understand the role and actions of glucagon
- Understand each drug class mechanism of actions
- Understand adverse effects of medications that limit their use
- Understand important kinetic parameters of the medications/medications classes

What is Diabetes?

A metabolic disease in which the body's inability to produce any or enough insulin causes elevated levels of glucose in the blood.

- ► Not enough insulin
- Increase insulin resistance

Diagnosis of Diabetes

- Hemoglobin A1c
- Blood glucose levels
- ► Test those who are at increased risk for DM......

Table 2.1—Criteria for the diagnosis of diabetes

A1C ≥6.5%. The test should be performed in a laboratory using a method that is NGSP certified and standardized to the DCCT assay.*

OR

FPG ≥126 mg/dL (7.0 mmol/L). Fasting is defined as no caloric intake for at least 8 h.*

OR

2-h PG ≥200 mg/dL (11.1 mmol/L) during an OGTT. The test should be performed as described by the WHO, using a glucose load containing the equivalent of 75 g anhydrous glucose dissolved in water.*

OR

In a patient with classic symptoms of hyperglycemia or hyperglycemic crisis, a random plasma glucose ≥200 mg/dL (11.1 mmol/L).

^{*}In the absence of unequivocal hyperglycemia, results should be confirmed by repeat testing.

Increased Risk for DM

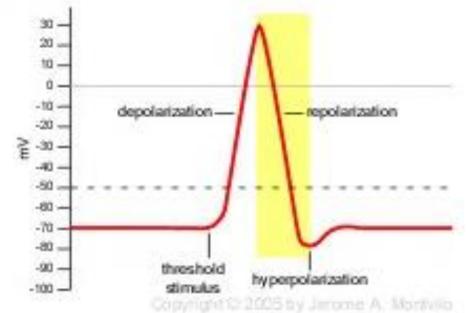
Table 2.2—Criteria for testing for diabetes or prediabetes in asymptomatic adults

- Testing should be considered in all adults who are overweight (BMI ≥25 kg/m² or ≥23 kg/m² in Asian Americans) and have additional risk factors:
 - · physical inactivity
 - first-degree relative with diabetes
 - high-risk race/ethnicity (e.g., African American, Latino, Native American, Asian American, Pacific Islander)
 - women who delivered a baby weighing >9 lb or were diagnosed with GDM
 - hypertension (≥140/90 mmHg or on therapy for hypertension)
 - HDL cholesterol level <35 mg/dL (0.90 mmol/L) and/or a triglyceride level >250 mg/dL (2.82 mmol/L)
 - women with polycystic ovary syndrome
 - A1C ≥5.7%, IGT, or IFG on previous testing
 - other clinical conditions associated with insulin resistance (e.g., severe obesity, acanthosis nigricans)
 - history of CVD
- For all patients, particularly those who are overweight or obese, testing should begin at age 45 years.
- If results are normal, testing should be repeated at a minimum of 3-year intervals, with consideration of more frequent testing depending on initial results (e.g., those with prediabetes should be tested yearly) and risk status.

The Pancreas

Glucagon

- Released by alpha cells of the pancreas
- Is catabolic
 - Responsible for the break down of:
 - ► fats, sugars, & amino acids

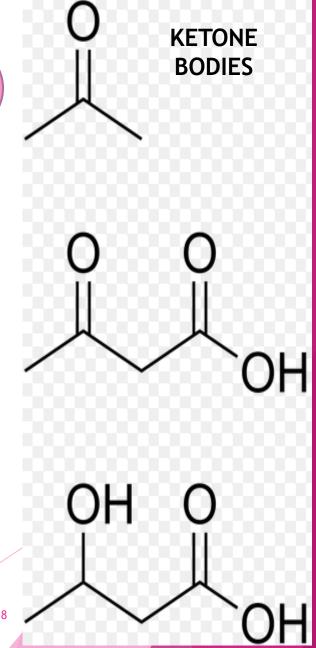

Insulin

- Released by the beta cells of the pancreas
- Is anabolic
 - ► Responsible for storage of:
 - ► Fats, sugars, & amino acids
- Other cell types and hormones
- δ Somatostatin

Diabetes & Potassium

Hypokalemia

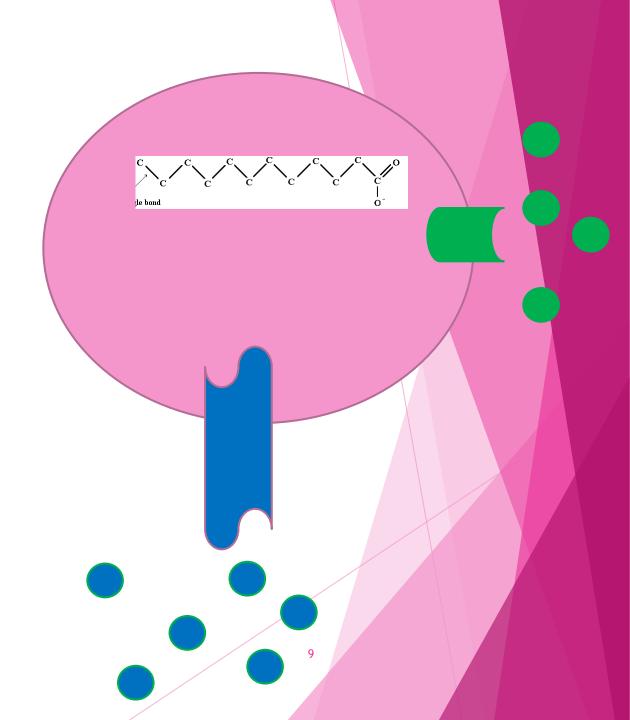
- Inhibit the release of insulin
- Leads to elevated blood sugars
- Hyperpolarizes cells


Hyperkalemia

- Insulin deficiency leads to chronic increase in serum potassium
- ► Glucose & insulin given
 - ▶ Push potassium into cells

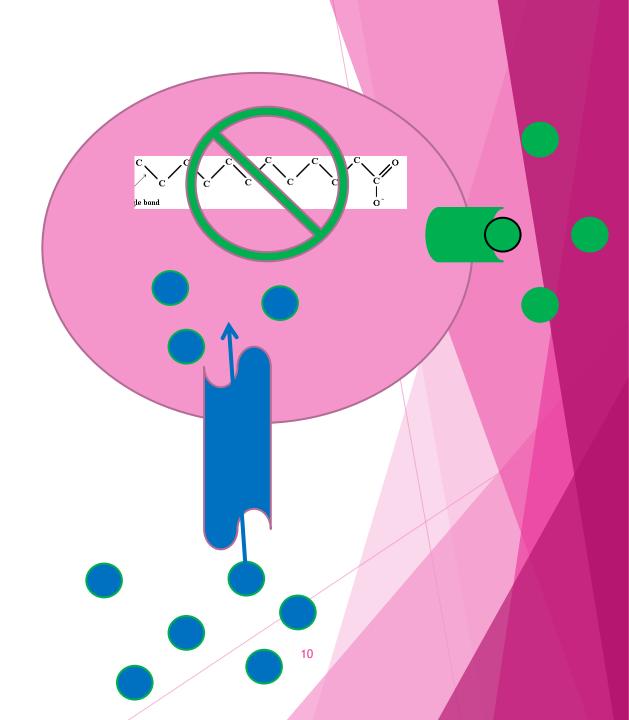
Fatty Acids for Energy

In the absence of insulin this process takes place!!


- Inhibited by insulin
- Use of fatty acids for energy
- Survival "starvation" mode
 - Save proteins
 - Utilize free fatty acids
- Breakdown of FFAs
 - ► Ketones may be used as an energy source
 - ▶ Feeds the brain
 - ▶ Inhibits the break down of proteins (AA amino acids)
 - ► EVENTUALLY LEADS TO KETOACIDOSIS DKA

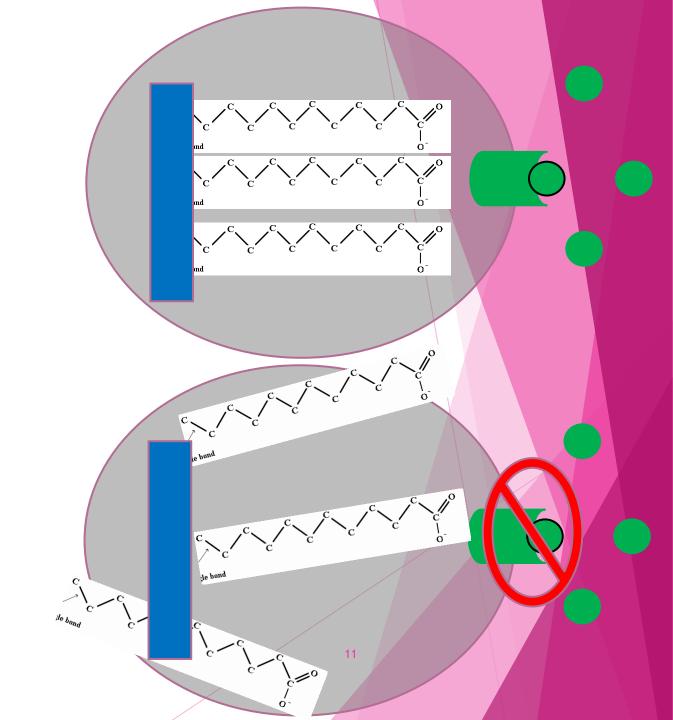
Fatty Acids for Storage

Insulin


- Binds to its receptor
- Allows the utilization of glucose for the Krebs Cycle = energy
- Inhibits the break down of FFAs
- Promotes the storage of FFAs

Fatty Acids for Storage

Insulin


- FFAs
 - ► Are stored as triglyceride instead
 - Triglycerides are stored in our adipose cells
 - Insulin suppresses the release of TG from the adipose cell

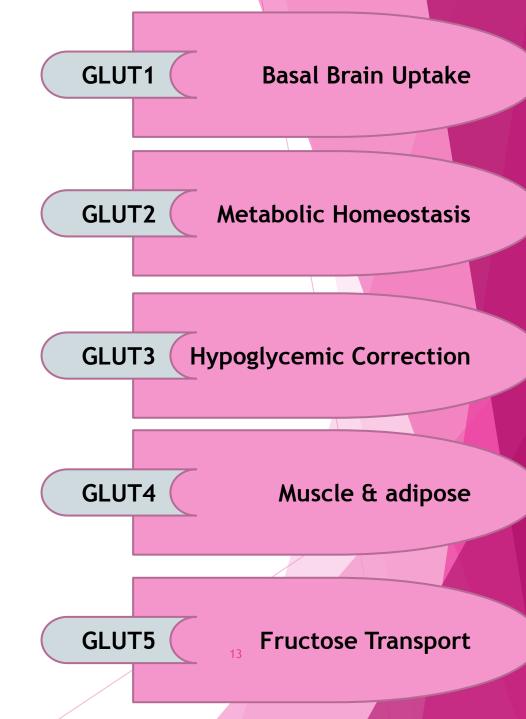
Fatty Acids for Storage

Adipose cell

- Under normal circumstances
 - Stored as TGs
 - Break down inhibited by insulin
- Decreased insulin or increased insulin resistance
 - Insulin does not bind its receptor
 - ► TG get broken down into FFAs

Insulin - Clear blood of glucose

Increases


- Glucose storage
- Glucose as an energy source
- Fat storage

Decreases

- Glucose production
- Fat breakdown
- Fat as an energy source
- Ketone bodies

Glucose

- ▶ GLUT1
 - ▶ Red blood cells, BBB, basal glucose supply
 - Medium affinity
- ► GLUT2
 - ► Liver, pancreas, small intestines
 - Low affinity
- ► GLUT 3
 - ► Neurons, kidney, brain
 - High affinity
- GLUT 4
 - ► Skeletal/cardiac muscle & fat cells
 - Medium low affinity
- ▶ GLUT 5
 - Small intestines
 - Medium affinity

What Does a Diabetic Patient Look Like?

Type 1

- Does not make insulin
- ► Thin
- Depends on hemoglobin A1c

Type 2

- Insulin resistant
- Obese
- ► Increase in serum TGs

Oral Medications to Treat Hyperglycemia

- Sulfonylureas
- Biguinides
- Alpha glucosidase inhibitors
- Meglitinides
- Thiazolidinediones
- Dipeptidyl peptidase IV (DPP IV) inhibitors
- Bile acid sequestrant (BAR)
- Sodium-glucose co-transporter 2 (SGLT 2) inhibitors (New)

Sulfonylureas - long acting secretagogues(squeezers)

First Generations

- Fallen out of favor
 - Equally effective
 - Increase incidence of adverse effects

2nd Generations

- MOA (main)
 - Increase release of insulin
- Kinetics
 - ▶ Well absorbed slowed by food
 - Highly protein bound
 - Low distribution (protein binding)
 - Metabolized by CYP2C9 (warfarin)
 - ► Half lives vary (daily dosing BID)

Sulfonylureas - long acting secretagogues(squeezers)

- ADRs
 - Hypoglycemia
 - Weight gain
 - Sulfa drug
- Drug interactions
 - CYP enzyme inhibitors/inducers
 - Alcohol
 - Disulfiram-like reaction (nausea/vomiting)

Biguanides - Metformin

► MOA

- Increased sensitivity to insulin
- Decrease hepatic glucose production
- Reduce carbohydrate absorption
- ▶ DOES NOT CAUSE HYPOGLYCEMIA NO INSULIN SECRETION

Kinetics

- ► Bioavailability 50%
- ▶ Distribution High (Vd ~1000 L) accumulated in RBCs
- Protein binding none
- Metabolism none
- ► Half life 1.5-3 hours (extended release formulations available)
- Excretion Urine (unchanged)

Biguanides - Metformin

- ADRs
 - Diarrhea
 - Nausea
 - Fatigue
 - Avoid in:
 - ► Alcoholics Lactic acidosis
 - ▶ Uncontrolled heart failure
- Drug interactions
 - Contrast dyes must be held

Alpha-Glucosidase Inhibitors

- ► MOA
 - ▶ Inhibits the absorption of carbohydrates in the small intestines
- Kinetics
 - Acarbose
 - Absorption
 - Active drug not absorbed
 - Metabolism
 - Gut bacteria in GI tract & digestive enzymes
 - Elimination
 - 2 hours
 - Excretion
 - 35% urine
 - 65% feces

- Miglitol
 - Absorption
 - Complete
 - Metabolism
 - None
 - Elimination
 - 2 hours
 - Excretion
 - Urine unchanged

Alpha-Glucosidase Inhibitors

- ADRs
 - ▶ Flatulence, abdominal cramping, bloating, diarrhea
 - ► Should decrease with use
- Contraindications
 - ► IBD

Meglitinides - Short-acting Secretagogues

Nateglinide (Starlix)

- Kinetics
 - ► Absorption Rapid
 - ► Bioavailability 73%
 - Protein binding 98%
 - Duration 4 hours
 - Metabolism CYP 2C9 & 3A4
 - ► Half life 1.5 hr
 - ▶ Urine 83%

Repaglinide (Prandin)

- Kinetics
 - Absorption Rapid
 - ► Bioavailability 56%
 - Protein binding 98%
 - Duration 4-6 hours
 - ► Metabolism CYP 2C8 & 3A4
 - Half life 1 hr
 - Feces 90 %

Meglitinides - Short-acting Secretagogues

- ADRs
 - Hypoglycemia
 - Weight gain
- Drug interaction
 - ► CYP enzyme inducers/inhibitors
 - ▶ 2C9 nateglinide
 - ▶ 2C8 repaglinide
 - ▶ 3A4 both
- Dosing TID with meals
 - PATIENTS DO NOT TAKE THIS DRUG IF THEY SKIP A MEAL

Thiazolidinediones - Pioglitazone

- ► Falling out of favor some pulled off market
- ► MOA
 - ► Increase sensitivity to insulin
 - ▶ Must produce insulin in order to work
- Kinetics
 - ► Bioavailability 80%
 - Peak concentrations 1-2 hrs (slowed by food)
 - Distribution Low (highly protein bound)
 - Metabolized CYP2C8
 - ► Half life 3-5 hrs
 - Duration longer due to gene expression
 - Excretion Urine and feces

Thiazolidinediones - Pioglitazone

- ADRs
 - Weight gain
 - Bone fracture
 - Edema Avoid in CHF
 - ▶ Use with spironolactone
 - Hepatotoxicity
 - ► Heart attack and stoke
- Lawsuits against Avandia Rosiglitazone

Dipeptidyl peptidase IV (DPP IV) inhibitors

- Incretins
 - Hormones in the body that:
 - ▶ Stimulates insulin secretion in response to meals
 - ► Inhibits glucagon secretion
 - ► Inhibits gastric emptying makes you feel full (causes satiety)
 - ▶ VERY SHORT HALF LIFE 2 MINUTES
 - Broken down by dipeptidyl peptidase IV
 - ▶ So, we created DPP IV inhibitors

Dipeptidyl peptidase IV (DPP IV) inhibitors

- ▶ Januvia (sitagliptin), Onglyza (saxagliptin), Trajenta (linagliptin)
- ► MOA
 - Inhibits the break down of incretin hormones

Kinetics	Sitagliptin	Saxagliptin	Linagliptin
Bioavailability	87%	75%	30%
Distribution	200 L	200 L	1100 L
Protein binding	40%	None	80-99%
Half life	8-12 hours	2-3 hours	> 100 hours
Excretion	Urine (unchanged)	Urine (metabolites)	Feces (unchanged)

Monitor renal function, caution with renal impairment

Dipeptidyl peptidase IV (DPP IV) inhibitors

- ADRs
 - Diarrhea
 - Constipation
 - Nausea
 - Hypoglycemia
 - ▶ Peripheral edema
 - Upper respiratory infection
- Drug interactions
 - ▶ Strong inhibitors/inducers of CYP3A4 for saxagliptin and linagliptin

Bile Acid Sequestrant - BAR

- Colesevelam Lipids....
 - Decrease cholesterol reabsorption
 - ► Increase LDL loss in feces
- Used as an adjunct
 - ► Improve cholesterol
 - ► Slight decrease in blood glucose
- Interacts with many medications
 - Absorption

Sodium-glucose co-transporter 2 (SGLT 2) inhibitors

- empagliflozin, canagliflozin (Invokana), dapagliflozin, ipragliflozin
- ► MOA
 - ▶ Decrease glucose reabsorption in the kidney, increase glucose excretion in the urine
 - Increased insulin sensitivity
 - Decreased gluconeogenesis
 - Increased insulin release "first phase"

Sodium-glucose co-transporter 2 (SGLT 2) inhibitors - Invokana

Kinetics

- Onset within 24 hours
- Duration throughout 24 hour dosing interval
- Absorption not affected by food, given prior to first meal may decrease intestinal absorption of glucose and further decrease post prandial blood glucose
- Distribution Vd 119 L
- Protein binding 99%
- ► Metabolism Hepatic, glucuronidation
- ► Bioavailability 65%
- Half life 10-13 hours
- ► Time to peak 1-2 hours
- Excretion ~40% feces, ~33% urine

Sodium-glucose co-transporter 2 (SGLT 2) inhibitors - Invokana

- ADRs
 - Hyperkalemia
 - Genitourinary infection, UTI
 - Renal insufficiency
 - Angioedema
 - Fatigue
 - Hypoglycemia
- Drug interactions
 - Drugs with mechanisms in the kidney (ACEI, ARBs, aliskirin) & potassium-sparing diuretics

Questions

