Schizophrenia: Pharmacology

UNIVERSITY OF HAWAI‘I HILO PRE-NURSING PROGRAM
NURS 203 – GENERAL PHARMACOLOGY
DANITA NARCISO PHARM D
Learning Objectives

- Understand the result of dopamine binding to D2 receptors in the mesolimbic, mesocortical, nigrostriatal, and tuberoinfundibular pathways of the brain under normal circumstances.

- Understand how the mesolimbic, mesocortical, nigrostriatal, and tuberoinfundibular pathways are affected in schizophrenia.

- Know the pathophysiologic result of treating schizophrenia and the adverse effects associated with the various treatments.

- Know the difference between 1st generation (typical) and 2nd generation (atypical) antipsychotics.

- Know the characteristics of individual drugs in each class that create a niche in therapy for that medication.

- Know the general pharmacology of each class of medication.
Overview

- Brain areas involved in schizophrenia and their functions
- How we treat and the adverse effects of treating schizophrenia
- 1st generation medications
- 2nd generation medications
Under Normal Circumstances
Effects of Dopamine on D2 Receptors

Nigrostriatal
- **Stimulates** initiation & coordination of movement

1. Akinesia
2. Bradykinesia
3. Tremor

1. Hyperactivity
2. Hyperkinesia
3. Tardive dyskinesia

Tuberoinfundibular
- **Inhibits** prolactin secretion in anterior pituitary

1. Increase milk production
2. Sexual dysfunction

1. Decrease milk production
2. Sexual dysfunction
Effects of Dopamine on D2 Receptors

- **Mesolimbic Pathway**
 - **Striatum**
 - Reward
 - Anticipation
 - Affect
 - Fear
 - **1. Increased desire and motivation**
 - **2. Addiction**
 - **3. Schizophrenia**

- **Ventral Tegmental Area (VTA)**
 - **1. Increased desire and motivation**
 - **2. Addiction**
 - **3. Schizophrenia**

- **Mesocortical Pathway**
 - **Cerebral Cortex**
 - Cognition
 - Affect
 - **1. Decreased desire and motivation**
Schizophrenia - A condition of too much dopamine expression in the brain leading to:

Positive Symptoms
- Hallucinations
- Delusions
- Paranoia
- Disorganized thoughts

Negative Symptoms
- Flat affect
- Cognitive deficits

Mesolimbic Pathway
- Reward
- Anticipation
- Affect
- Fear

Mesocortical Pathway
- Cognition
- Affect
How do we treat schizophrenia?

Block (antagonize) dopamine receptors

How does this effect the mesolimbic and mesocortical pathways in the brain?
Effects of Dopamine on D2 Receptors

Mesolimbic
- Reward
- Anticipation
- Affect
- Fear

Mesocortical
- Affect
- Cognition

Decrease
- Hallucinations
- Paranoia
- Delusions
- Disorganized thoughts

No change or worse
1. Flattened affect
2. Cognitive deficits
How does this effect other dopamine pathways in the brain?

| Nigrostriatal | Tubero-infundibular |
Effects of Dopamine on D2 Receptors

Nigrostriatal
- **Stimulates** initiation & coordination of movement
 1. Akinesia
 2. Bradykinesia
 3. Tremor

Tuberoinfundibular
- **Inhibits** prolactin secretion in anterior pituitary
 1. Increase milk production
 2. Sexual dysfunction
1st Generation Antipsychotics (Typicals)

- Prochlorperazine
- Perphenazine
- Tirfluoperazine
- Fluphenazine
- Thioridazine
- Haloperidol
- Chlorpromazine
How 1st Generation Antipsychotics Work

MOA

- Antagonize the D2 receptors in the mesolimbic pathways of the brain
 - Reduction in positive symptoms
- Antagonize the D2 receptor in the mesocortical pathways of the brain
 - Increase in or no change in negative symptoms

Other receptors potentially bound (adverse effects)

- H1 (sedation)
- M1 (anticholinergic)
- Alpha1 (orthostatic hypotension)
Characteristics of 1st Generation Antipsychotics

ADRs
- Extrapyramidal symptoms (EPS)
 - Tremor (at rest)
 - Rigidity
 - Akathisia (restlessness)
 - Dystonia (twisting & writhing)
- Increase in prolactin
 - Milk production
 - Infertility & decreased libido
 - Weight gain
- Reward circuit stimulation
 - Increase in cravings
 - Weight gain
 - Addiction

ADRs cont.
- Tardive dyskinesia
 - Grimacing
 - Tongue protrusion
 - Lip smacking
 - Blinking
 - All body involvement (severe)
- Neuroleptic malignant syndrome (NMS)
 - Severe muscular rigidity
 - Fever
 - Autonomic instability
 - Changes in the level of consciousness
Haloperidol (Haldol)

- **MOA** – Non-selective blockade of the D2 receptor
- **Dosage forms**
 - Oral concentrate
 - Tablet
 - IM
 - Decanoate
 - Lactate
- **Kinetics**
 - Protein binding - ~88-92%
 - Half life
 - Decanoate - 21 days
 - IM - 20 hours
 - IV - 14-26 hours
 - Oral 14-37 hours
- **Kinetics Cont.**
 - Metabolism – Hepatic
 - 50-60% glucuronidation (inactive)
 - CYP3A4 – inactive metabolites, haloperidol, toxic metabolites/CYP2D6
 - Time to peak
 - Decanoate – 6 days
 - Oral – 2-6 hours
 - IM – 20 minutes
 - Excretion
 - Urine 30% (1% - unchanged drug)
- **Very high potency**
 - High incidence of EPS
 - Low incidence of others
- **Interactions**
 - CYP3A4 & 2D6 substrates & inhibitors
 - Pregnancy category C
 - Crosses placenta but benefit outweighs risk
Chlorpromazine (Thorazine)

MOA – Antagonist of mesolimbic D2 receptors and alpha receptors (vasculature & release of anterior pituitary hormones)

Dosage forms
- IM
- Oral

Kinetics
- Onset – 15 minutes (IM) / 30-60 minutes (Oral)
- Protein bound – 92-97%
- Metabolism – Liver, active & inactive metabolites
- Bioavailability – 20%
- Half life – Initial 2 hours, terminal 30 hours
- Excretion - Urine

Low potency
- Low EPS
- High incidence of
 - Breast milk production (D2 – endocrine)
 - Weight gain (Reward circuit)
 - Sedation (H1)
 - Orthostatic hypotension (alpha 1)
 - Anticholinergic (M1)

ADRs
- Hypotension, tachycardia, sexual dysfunction, constipation, dry mouth

Interactions
- CYP2D6 substrates/inhibitors
- Many
- Pregnancy category (not listed), detected in breast milk
2nd Generation Antipsychotics (Atypical)

- Clozapine
- Risperidone
- Aripiprazole
- Quetiapine
- Olanzapine
- Ziprasidone
- Iloperidone
- Paliperidone
How 2nd Generation Antipsychotics Work

Serotonin involvement in schizophrenia
- More serotonin receptors in the brain of schizophrenic patients
- Serotonin agonists can cause hallucinations/worsen schizophrenia
- Some antipsychotic medications are serotonin antagonists (atypicals)

MOA – Partial agonist at D2 receptor & antagonism of the 5HT-2A receptor

2nd generation medications bind to D2 receptors with less affinity than 1st generation medications

2nd generation medications are displaced from the D2 receptor more readily than 1st generation medications
How 2nd Generation Antipsychotics Work

2nd generation medications bind to D2 receptors with less affinity than 1st generation medications.

2nd generation medications are displaced from the D2 receptor more readily than 1st generation medications.

Other receptors potentially bound (adverse effects):
- H1 (sedation)
- M1 (anticholinergic)
- Alpha1 (orthostatic hypotension)
Characteristics of 2nd Generation Antipsychotics

Kinetics
- Vary depending on the agent

How to choose
- Atypical
- Non-adherent – long-acting injection
- Contraindications & BBW
- ADRs

ADRs
- Increased appetite, weight gain, dyslipidemia, insulin resistance, beta cell dysfunction, cardiovascular dysfunction, movement disorders, flat affect, cognition deficits, endocrine effects

Monitor
- Lipids
- Fasting glucose
- Weight
Clozapine (Clozaril)

MOA – Antagonist at the D2, 5HT-2A, H1, alpha adrenergic, & cholinergic receptors

ADRs
- Tachycardia, drowsiness, dizziness, insomnia, drooling, weight gain, constipation, nausea/vomiting, abdominal pain/heartburn

Black Boxed Warning (BBW)
- Orthostatic hypotension, bradycardia, syncope, & cardiac arrest
- Fatality due to myocarditis & cardiomyopathy
- Severe neutropenia (ANC < 500 mcL) agranulocytosis
- Seizures
- Dementia

Interactions
- CYP1A2 (major) others (minor), dopamine agonists, medication that prolong QT interval, anticholinergic, metoclopramide, mifepristone, potassium chloride, St. John’s Wort, other antipsychotic medications
- Pregnancy category B (can affect the fetus)

REMS program medication – Program to help protect patients against serious adverse effects

Used for refractory schizophrenia
Onlanzapine (Zyprexa)

Receptor binding similar to clozapine – Binds to:
- D1-4
- 5HT2A, 2C, & 3
- H1
- M1-5
- Weak
 - GABA A, BZD, beta adrenergic

Dosage forms
- Oral, IM, & ODT

ADRs – Similar to clozapine (no agranulocytosis)
- Causes the most weight gain

Interactions
- Similar to clozapine
- CYP1A2

BBW
- Sedation
- Dementia

Pregnancy category C
- Excreted in breast milk
Quetiapine (Seroquel)

Receptor binding
- D2 & D1
- 5HT-2, 1A
- H1
- Alpha 1 & 2
- BDZ
- Muscarinic

Dosage form
- Tablet

Half life
- Short, 6 hours

ADRs
- Similar to clozapine
- **Higher incidence of drowsiness**

Interactions
- Similar to clozapine
- CYP3A4

BBW
- Increase suicide risk w/MDD
- Dementia

Not indicated for use in children less than 10 years of age

Pregnancy category C
- Excreted in breast milk
Risperidone (Risperdal)

Receptor binding (highest to lowest affinity)
- 5HT2
- H1 & alpha 1&2
- D2
- Others

Dosage forms
- Oral, IM, ODT

ADRs – Similar to other atypicals
- Less hypotension & tachycardia, weight gain, & sedation
- More endocrine (galactorrhea & sexual dysfunction)

Interactions – Similar to other atypicals
- CYP2D6 substrates/inhibitors

BBW
- Dementia

Pregnancy category C
- Excreted in breast milk
Aripiprazole (Abilify)

Receptor binding (highest to lowest affinity)
- D2 & 3, 5HT-1A (partial agonist) / 5HT-2A (antagonist)
- NO affinity for M

Dosage forms
- IM, oral, ODT

Uses
- BP1
- Autistic irritability
- MDD
- Schizophrenia
- Tourette's
- Agitation - IM

Half life
- Very long, 75 hours

ADRs – Similar to other atypicals
- Moderate effects on weight gain

Interactions – Similar to other atypicals
- CYP2D6

BBW
- Increased risk suicide in children
- Dementia

Pregnancy category C
- Excreted in breast milk
Long-acting Injectables

Fluphenazine
Haldol
Risperdal
Olanzapine
Paliperidone
Haldol Decanoate

Must overlap therapy with oral medications
 • 2 weeks

Z-track administration

Dosed every 4 weeks
Fluphenazine Decanoate

Must overlap therapy with oral medications
 ◦ 1 week

Z-track administration

Dosed every 3-4 weeks
Risperdal Consta

Must overlap therapy with oral medications
 ◦ 4-6 weeks

Reconstitute and inject immediately

NO Z-track administration

Dosed every 2 weeks
Invega Sustenna

No overlap with oral therapy
No Z-track administration
Dosed every 4 weeks
Complicated dosing schedule
Zypadhera (Olanzapine)

Specific dosing conversion from PO to injection

No overlap with oral medications

REMS program
- Certification (renewed every 3 years)
 - Prescriber
 - Dispenser
 - Facility where given

Pre administration
- Patient must have transportation

Post administration
- Patient must wait in office for 3 hours
- Must be alert and oriented with no signs of symptoms
Treating adverse effects

Movement disorders
- Anticholinergics
- Antihistamines
- Dopaminergic

Restlessness
- Beta blockers
- Benzodiazepines
Questions