HEART FAILURE PHARMACOLOGY

University of Hawai‘i Hilo Pre-Nursing Program
NURS 203 – General Pharmacology
Danita Narciso Pharm D
LEARNING OBJECTIVES

- Understand the effects of heart failure in the body
- Understand how one gets heart failure
- Understand how each of the medications work to relieve the symptoms of heart failure
- Know which medications help prevent cardiac remodeling
- Know digoxin and nesiritide
WHAT IS HEART FAILURE - WHEN THE VENTRICLES CANNOT PUMP OUT ENOUGH BLOOD TO MEET THE DEMANDS OF THE BODY

Diastolic
Ventricular filling (enlargement/stiffness)

Systolic
Ventricular pumping (contractility)/ejection

Right sided
Back up of blood into the venous system

Left sided
Back up of blood into the pulmonary system
RISK FACTORS FOR HEART FAILURE

Table 1. Established and Hypothesized Risk Factors for HF

<table>
<thead>
<tr>
<th>Major Clinical Risk Factors</th>
<th>Toxic Risk Precipitants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, male sex</td>
<td>Chemotherapy (anthracyclines, cyclophosphamide, 5-FU, trastuzumab)</td>
</tr>
<tr>
<td>Hypertension, LVH</td>
<td>Cocaine, NSAIDs</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>Thiazolidinediones</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>Doxazosin</td>
</tr>
<tr>
<td>Valvular heart disease</td>
<td>Alcohol</td>
</tr>
<tr>
<td>Obesity</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minor Clinical Risk Factors</th>
<th>Genetic Risk Predictors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoking</td>
<td>SNP (e.g., α2CDel322-325, β1Arg389)</td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td></td>
</tr>
<tr>
<td>Sleep-disordered breathing</td>
<td></td>
</tr>
<tr>
<td>Chronic kidney disease</td>
<td></td>
</tr>
<tr>
<td>Albuminuria</td>
<td></td>
</tr>
<tr>
<td>Homocysteine</td>
<td></td>
</tr>
<tr>
<td>Immune activation, IGF1, TNFα, IL-6, CRP</td>
<td></td>
</tr>
<tr>
<td>Natriuretic peptides</td>
<td></td>
</tr>
<tr>
<td>Anemia</td>
<td></td>
</tr>
<tr>
<td>Dietary risk factors</td>
<td></td>
</tr>
<tr>
<td>Increased HF</td>
<td></td>
</tr>
<tr>
<td>Sedentary lifestyle</td>
<td></td>
</tr>
<tr>
<td>Low socioeconomic status</td>
<td></td>
</tr>
<tr>
<td>Psychological stress</td>
<td></td>
</tr>
</tbody>
</table>

5-FU indicates 5-fluorouracil; SNP, single-nucleotide polymorphism; LVID, left ventricular internal dimension; LVH, left ventricular hypertrophy; NSAIDs, nonsteroidal antiinflammatory drugs; IGF, insulin-like growth factor; TNF, tumor necrosis factor; IL, interleukin; CRP, C-reactive protein; and HR, heart rate.
WHAT CAUSES HEART FAILURE?

<table>
<thead>
<tr>
<th>Diastolic *PRESERVED EF</th>
<th>Systolic *DECREASED EF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased ventricular stiffness</td>
<td>Damaged or reduced heart muscle (MI)</td>
</tr>
<tr>
<td>Mitral or tricuspid valve stenosis</td>
<td>Dilated cardiomyopathy</td>
</tr>
<tr>
<td>Pericardial disease</td>
<td>Ventricular hypertrophy</td>
</tr>
<tr>
<td></td>
<td>• Pressure overload</td>
</tr>
<tr>
<td></td>
<td>• Volume overload</td>
</tr>
</tbody>
</table>

- **Usually from prolonged uncontrolled hypertension**
- **Ischemic heart disease (MI)**
- **Uncontrolled risk factors**
WHAT HEART FAILURE CAUSES

Right heart failure
- Congestion of peripheral tissues
 - Dependent edema and ascites
 - GI tract congestion
 - Anorexia, GI distress, weight loss
- Liver congestion
 - Signs related to impaired liver function

Left heart failure
- Decreased cardiac output
- Pulmonary congestion
 - Activity intolerance and signs of decreased tissue perfusion
 - Impaired gas exchange
 - Cyanosis and signs of hypoxia
 - Cough with frothy sputum
 - Orthopnea
 - Paroxysmal nocturnal dyspnea

FIGURE 28-5 Manifestations of left- and right-sided heart failure.

THE HEART TRIES TO COMPENSATE
PROBLEMS ASSOCIATED WITH HEART FAILURE

Remodeling
- Refers to the structural damage that can take place in the heart after prolonged stress
 - Chamber dilation, fibrosis, abnormal cells, reduction in cardiac muscle cells

Compensation
- Your body’s attempt to make up for the lack of oxygen and nutrients to the tissues

Decompensation
- When your body cannot fill the void any longer
STRATEGIES FOR TREATING HEART FAILURE

Reduce Heart Rate
- Regulate SNS

Reduce Preload
- Venous return of blood to the heart
- Blood volume
- RAAS

Reduce Afterload
- Arteries
- Regulate SNS
- RAAS
At Risk for Heart Failure

STAGE A
At high risk for HF but without structural heart disease or symptoms of HF.
- Hypertension
- Atherosclerotic disease
- Diabetes
- Obesity
- Metabolic syndrome
- Patients with cardiovascular risk factors or family history of HF

STAGE B
Structural heart disease but without signs or symptoms of HF.
- Previous MI
- LV remodeling including LVH and low EF
- Asymptomatic valvular disease

THERAPY
- **GOALS**
 - Treat hypertension
 - Encourage smoking cessation
 - Treat lipid disorders
 - Encourage regular exercise
 - Discourage alcohol intake, illicit drug use
 - Control metabolic syndrome
- **DRUGS**
 - ACEI or ARB in appropriate patients (see text)

STAGE C
Structural heart disease with prior or current symptoms of HF.
- Known structural heart disease
- Shortness of breath and fatigue, reduced exercise tolerance

THERAPY
- **GOALS**
 - All measures under Stage A and B
 - Dietary salt restriction
- **DRUGS FOR ROUTINE USE**
 - Diuretics for fluid retention
 - ACEI
 - Beta-blockers
- **DRUGS IN SELECTED PATIENTS**
 - Aldosterone antagonist
 - ARBs
 - Digitalis
 - Hydralazine/nitrates
- **DEVICES IN SELECTED PATIENTS**
 - Biventricular pacing
 - Implantable defibrillators

STAGE D
Refractory HF requiring specialized interventions.
- Patients who have marked symptoms at rest despite maximal medical therapy (e.g., those who are recurrently hospitalized or cannot be safely discharged from the hospital without specialized interventions)

THERAPY
- **GOALS**
 - Appropriate measures under Stages A, B, C
 - Decision re: appropriate level of care
- **OPTIONS**
 - Compassionate care, end-of-life care/hospice
 - Extraordinary measures
 - Heart transplant
 - Chronic inotropes
 - Permanent mechanical support
 - Experimental surgery or drugs
ACEI & ARBS

REDUCE PRELOAD
- Reduced aldosterone release
- Dilate veins (long-term use effect)

REDUCE AFTERLOAD
- Relaxation of arterial smooth muscle

PREVENT/REVERSE REMODELING
- Decrease in SNS tone
 - EPI causes fibrotic processes in the heart
- Angiotensin II receptors in the heart cause hypertrophy
- Angiotensin I receptors in the heart
Three beta blockers have been studied to show decrease in morbidity and mortality with their use in heart failure

- Metoprolol succinate
- Cavedilol
- Bisoprolol

How BB work in HF

- Caution – may reduce cardiac output
- Decreased concentrations of catecholamines
 - Upregulation of beta receptors
 - Decrease heart rate
 - Decreased hypertrophy & remodeling

ADRs

- Bronchial constriction
- Reduced cardiac output
 - Ventricular failure
- Fatigue
- Reduced exercise tolerance
- Unpleasant dreams, insomnia, depression
- Deleterious effect on lipid panel
- Withdrawal - taper
DIURETICS

Thiazide
- Mild HF

Loop
- Marked fluid retention
 - Edema of lungs & limbs

PS
- Adjunct
 - Increase diuresis
 - Correct electrolyte imbalance

Therapeutic effects in HF treatment (thiazide & loops)
- Reduce preload
- Reduced blood volume
- Reduce cardiac size

Potassium Sparing
- Reduce morbidity & mortality
- Reduction in aldosterone action
- All with mod/severe HF
DIGOXIN

Increase the refractory period – negative chronotropic
Decrease conduction velocity – negative dromotropic
Increase contractility of the heart – positive inotropic

Are from PSN effects

Next slide
DIGOXIN

Increase contractility of the heart – positive inotropic

1. The Na/K ATPase pump moves Na against its concentration gradient outside the cell
2. A Ca/Na exchanger allows Na to flow into the cell, in exchange for a calcium (driven by concentration gradient)
3. This creates a charge gradient and maintains a concentration gradient for Ca to follow

UNDER NORMAL CIRCUMSTANCES

- Sodium
- Potassium
- Calcium
DIGOXIN

Increase contractility of the heart – positive inotropic

UNDER NORMAL CIRCUMSTANCES

1. The Na/K ATPase pump is inhibited
2. Less Ca is lost in the Ca/Na exchanger
3. Ca still moves in the cell – higher Ca levels are maintained

WITH DIGOXIN
DIGOXIN — NARROW THERAPEUTIC WINDOW

Kinetics
- 65-80% bioavailability
- Distributes well, CNS
- Excreted unchanged by kidneys
 - Dose adjust

ADRs
- At high/toxic doses, SNS outflow
- Arrhythmia — too much calcium in heart
- Bigeminy
- AV block
- Ventricular tachycardia
- Ventricular fibrillation
- Diarrhea & vomiting
- CNS — Halos, disorientation & hallucinations
DIGOXIN — EXTRA BEATS

Too much calcium
- Delayed after depolarization
- Potassium increase = more positive resting membrane potential

Normal sinus rhythm
Premature Ventricular Beats (PVB) - bigeminy
Digoxin interacts with the following substances:

- Potassium
 - Hyperkalemia – decreases the effects of digoxin
 - Hypokalemia – Increases the effects of digoxin
- Thiazide and loop diuretics
 - Cause hypokalemia
- Potassium sparing diuretics
 - Cause hyperkalemia
- Calcium supplementation
- Magnesium supplementation

Antidote = Potassium or anti-digoxin antibody
DIGOXIN – DIGIFAB CALCULATIONS

Page 514 in your book

For digoxin tablets, oral solution, or intramuscular injection:

\[
\text{Dose (mg)} = \frac{\text{Dose ingested (mg)} \times 0.8}{0.5} \times 38
\]

For digoxin capsules, or IV digoxin:

\[
\text{Dose (mg)} = \frac{\text{Dose ingested (mg)}}{0.5} \times 38
\]

When the amount of digoxin ingestion is unknown and the steady-state serum level is unavailable, 760 mg of digoxin immune Fab (ovine) is usually administered because it is reportedly sufficient to treat most life-threatening ingestions. A common strategy is to administer 380 mg and observe for client response, with an additional 380 mg administered if needed.
HYDRALAZINE - VASODILATOR

Therapeutic effects

Dilated arteries (reduce afterload)
Reduce remodeling – long-term effect
Increase cardiac output

Used in patients with
- High peripheral vascular resistance
- Low ventricular output

ADRs

Headache
Nausea
Palpitations
Lupus like symptoms
- Arthralgia, myalgia, skin rash
Fever
Peripheral neuropathy
NITRATES - ISOSORBIDE DINITRATE

Therapeutic effects

- Dilated veins (reduce preload)
- Reduce remodeling – long-term effect

Used in patients with:
- High ventricular filling pressure
- Pulmonary congestion & SOB

ADRs

- Headache
- Orthostatic hypotension
- Tachycardia
NESIRITIDE

Non-selective dilation of vessels

Brain Natriuretic Peptide (BNP)

What is BNP
- Substances released in HF patients to attempt to balance the activation of the RAAS system

What does BNP (with ANP in the body) do?
- Natriuresis
- Diuresis
- Vasodilation
- Decreased aldosterone
- Decreased hypertrophy
- Inhibition of SNS and RAAS
NISIRITIDE

Uses/ADRs

Uses:
- Reduce preload and afterload
- Acute decompensated heart failure

ADRs:
- Severe hypotension
- Ventricular arrhythmias
- Renal damage

Kinetics

Used as continuous IV infusion – very short half life

Metabolized by vascular enzymes and excreted in the urine
QUESTIONS