Lecture 1: Why do we use statistics, populations, samples, variables,

why do we use statistics?

• interested in understanding the social world
• we want to study a portion of it and say something about it
 • ex: drug users, homeless, voters, UH students

Populations and Samples
Populations, Sampling Elements, Frames, and Units

A researcher defines a group, “list,” or pool of cases that she wishes to study. This is a population. Another definition: population = complete collection of measurements, objects or individuals under study.
sample = a portion or subset taken from population

funny circle diagram

so we take a sample and infer to population

Why? feasibility – all MD’s in world, cost, time, and stay tuned for the central limits theorem...the most important lecture of this course.

Visualizing Samples (taken from) Populations

Population

Group you wish to study (Mostly made up of “people” in the social sciences)

Then we infer from sample back to population (ALWAYS SOME ERROR! “sampling error”)

Sample (a portion or subset of the population)

This population is made up of the things she wishes to actually study called **sampling elements**. **Sampling elements** can be people, organizations, schools, whales, molecules, and articles in the popular press, etc. **The sampling element is your exact unit of analysis.** For crime researchers studying car thieves, the sampling element would probably be individual car thieves – or theft incidents reported to the police. For drug researchers the sampling elements would be most likely be individual drug users.

Inferential statistics is truly the basis of much of our scientific evidence. We hope that what we study (a sample) is representative of the population from which the sample was drawn. You are in a statistics class to learn about the process of inferential statistics, to learn what are the “mathematical rules” that allow us to infer from a sample to a population
There are two main types of sampling methods that you should be aware of: probability vs. non-probability samples. If we use a method that ensures a probability sample we know in advance how likely (what is the probability?) it is that a sampling element will be selected from its population. If our method does not allow us to know this likelihood (or probability) it is non-probability sample.

Inferential statistics depends upon a random sample or a probability sample. The best scientific data “out there” is based upon probability sampling. However, for some subjects probability sampling is very difficult or even unethical. For example, most of the drug research (prescription and illegal) is based upon non-random samples. Ethnography has been used by researchers to study crime.

Simple Random Sample= all of the people (or sampling elements) in the population have an equal opportunity of being selected into the sample. Idea of drawing names out of a hat, or balls from lottery game. And actually there is a difference between a random sample and a random representative sample. For this class we will say that one of our assumptions for inferential statistics is a “random sample,” but technically speaking what we really mean is a “random representative sample.”

How a simple random sample of Oahu would not be “representative” of Oahu.

Imagine you wanted a sample to represent all people living on Oahu and you put everyone’s name on a ping pong ball (like keno or bingo) and had a machine that would spit out 2,000 balls randomly (again like keno or bingo but with way more balls in the cage or hopper). So sample would be random, but not representative of all of Oahu. Why? Because most of the people on Oahu live in the “urban core” say between Diamond Head and Pearl City. So your sample would tend to get a whole lot of those people and not enough people from the less populated areas such as Kahuku or North Shore, etc. You could apply the same logic to the population of voter in the US. If you did a simple random sample, your sample would be made up mostly of people who live in the big cities on the
east and west coasts and not enough people from the sparsely populated states such as North Dakota, Wyoming, Idaho, etc.

Good random [representative] samples require a good sampling frame

Good random samples depend upon having a **sampling frame** that is representative of the population.

When we make a “list” that operationalizes our population and closely approximates all of the elements in our population we have created a **sampling frame**. A sampling frame could be telephone numbers [be they landline, mobile, or both], DMV records, voter registration lists, all of the people who frequented the school common area at the time you collected your data, etc. Many times it is **quite difficult** to find a **sampling frame that closely approximates all of the elements in your “targeted” population**. This is especially true with “deviant’ or “hidden” populations such as drug users, criminals, homeless, gays, etc.

A good sample is usually dependent upon a very **good match between the sampling frame and the elements**. As you might imagine, it is difficult to come up with a good sampling frame for of criminals, or drug users. This is true for any “hidden” or “deviant” population.

Good and bad matches between sampling frames and the elements in the population

Imagine voting registration records to make a sampling frame of voters, or listed phone numbers in a phone book to approximate homeowners. These are pretty good matches.

Bad Matches

Imagine using DMV records (car ownership) to reach jurors (as in CA), or voting registration lists to reach the homeless. These are extreme examples of poor mismatches but hopefully they illustrate the potential problems.
Back in the day, about 95% of the household population had landline telephones. Therefore the books used to teach that landlines are a pretty good sampling frame. That has changed.

So imagine using landlines to reach the population of registered voters? What would be wrong with that? Well in 2008 when President Obama was elected some polls did that. As late as 2017 it was illegal for pollsters to use computerized random digit dialing to reach cell phones. You could use it to reach landlines, but to reach a cell phone you had to have a real person dial the number. [Hint: it is more expensive to pay a person than a computer to dial phone numbers.] So if you had a sample of registered voters that come from landlines in 2008, what type of voters would you systematically miss? The young.

How about this crime example: I want to study drug dealers and I use as my sampling frame all of those convicted for that crime in Phoenix last year. Is this a good match? Why or why not? (It is not a good match because it might just include the really “bad” or “unlucky” or perhaps even “stupid” drug dealers.)
known vs. unknown sampling frames for populations

The sampling frames for some populations are intrinsically knowable while some are “unknowable.” This is important, because when we seek to take a truly random sample from a population, we need to have a sampling frame that matches the population as closely as possible. The closer the match between the population and the sampling frame, the better the sample will be.

Some populations are “unknowable” and there is literally no way to come up with a truly matching sampling frame. If there is NO way to accurately count the members of the population it is unknowable. If there is “no list” of members of the population then it is best thought of as “unknowable.” For example, almost all deviant or “hidden” populations out there are “unknowable” as there is no list of marijuana users, cocaine users, street prostitutes, homeless people, gay people, surfers, etc. So for populations that are “hidden” (some would be considered “deviant” and some could be quite “conventional”), there are no perfectly matching sampling frames that exist and a researcher has to “do the best they can.” Try to imagine sampling frames for the hidden populations of gay people, drug addicts, drug dealers, car thieves....these would all be considered “deviant” populations in some way and you cannot come up with a perfect match. (Political correct note: deviant is NOT a moral statement or judgment: it is a statement about how conventional the group is considered to so called “main-stream” society). There are also many very conventional populations that are still “hidden.” There is nothing deviant about surfers, divers, fishermen, and mountain bike riders, but each of these populations are “hidden” if you think about it. There is no list of ALL surfers, divers, fishermen, or mountain bike riders that could be used as a sampling frame.

Some populations are “knowable” and there are perfectly matching sampling frames (e.g. using the sampling frame of “a voter registration list” to reach the population of “voters”) or very good matching sampling frames (e.g. using the sampling frame of phones to reach the population of “home owners.”) So, knowable populations are those where there is
probably a list out there (even if you do not have access to it). Registered voters are registered on a list. So are homeowners, car owners, etc.

Now to complicate matters. Some populations are knowable and a perfect sampling frame exist for the, but they might as well be unknowable, because it is very unlikely that a researcher would ever gain access to it. So, just because some government agency has a list (a perfectly matching sampling frame), that does not mean that a researcher will have access to that list to use as a sampling frame. The classic example is children in public schools K-12. This is a knowable population and there is obviously a perfectly matching sampling frame for it: the list of registered students. But, since they are “minors,” it is exceedingly difficult for researchers to gain access to such lists. The same can be said for “juvenile delinquents,” as court records of juveniles are generally considered “private.” And even though there exists as perfectly matching sampling frame for the population of “registered UH students,” a generic researcher would be unlikely to gain access to that list due to privacy concerns. A researcher would need major political connections to be granted access to lists of school children or juvenile delinquents, even though these populations “have a list” and they are “knowable” in the theoretical sense.

Exercise for in person class: decide whether or not the following populations are knowable or unknowable/ whether or not there exists a “list” that could be used as a sampling frame for the following populations. Remember that some answers will be “it depends upon how the population is defined.”

• all professional baseball players in the world (mlb in USA)

This one depends. All professional baseball players in the world is probably best described a “unknowable,” as there are many countries with small “semi-pro” leagues that do not keep centralized lists.

• all registered students at UH

This is a knowable population and there exists a perfectly matching sampling frame for it, but the list for this population would most likely be “off limits” to most researchers.
• illicit drug users

If this population is defined as “all illicit drug users” then the population is unknowable and there is no list that could be used as a sampling frame. Now if you defined the population as “illicit drug users who were convicted of possession of illicit drugs” then there is such a list that is kept by state/federal court systems (but the researcher would need political connections to gain access to these sampling frames).

2) which are samples and pops

• people who drive cars
• registered voters who responded to CNN survey
• pot smokers here in HI

The answer to all of these above is “it depends on how the population is originally defined by the researcher.” Each could be either a sample or a population.

Variables - we use variables in statistics to study social world

When we study the social world using statistics we need to define characteristics that we wish to study so that they can be expressed using numbers.

A book definition of a variable: (p 42) "a characteristic of interest that can be observed." Examples include gender, age, # of touchdowns,# of children born, t-shirt size.

Gender: 1= female 2=male
Age (in whole years): ________ [insert number]
of touchdowns scored: ________ [insert number]
of children born to a woman: ________ [insert number]
T-shirt size: 1= small 2= medium 3=large.

But note that a variable must vary. If you are doing a study of the population of teen mothers, then the characteristic of gender would NOT be a variable. It would not vary in the population as all the people in the population are, by definition, women. So a variable must vary!
"coding" variables

When we assign a number to a category of a variable we have “coded” it. Pretend we have a variable that measures “gender” 1= female 2=male. We assign the number 1 to female and the number 2 to males. Thus, we have “coded” men as 2 and coded females as 1.

Pretend we have a variable that measures age in whole years: Age (in whole years): ________ [insert number]. The number is the “coding” and is quite common sense. If you are 41 years old, you insert the number 41 and that is the coding. Many “natural number” variables code in a very common sense manner like this. Imagine height in whole inches, weight in whole pounds, number of cars you own, number of dollars you paid for your house. Each of these would “code” naturally with the number.

So in the lecture notes for this course you will often see variable expressed with their coding (as above):

- Age (in whole years): ________ [insert number]
- # of touchdowns scored: ________ [insert number]
- # of children born to a woman: ________ [insert number]
- T-shirt size: 1= small 2= medium 3=large.

Stay tuned for how we classify variables as “continuous vs. discrete” and “nominal, ordinal, interval, or ratio.”

parameter (pop) vs. statistic (sample)

Whenever we refer to a number that describes a population we call it a “population parameter” or more commonly simply a “parameter.” For example when we describe the size of a population we refer to it by the CAPITAL letter N. ["N" = number] So, using statistical shorthand, a population with 1,000 members would be look like this:

N=1,000
Whenever we refer to a number that describes a sample we call it a “sample statistic” or more commonly simply a “statistic.” For example when we describe the size of a sample we refer to it by the SMALL CASE letter n. ["n" = number] So, using statistical shorthand, a sample with 10 members would be look like this:

n=10

Below is our “funny circle diagram” to help you visualize what I am talking about:

Population parameters vs. sample statistics

You will see many many symbols that are statistical short hand for “parameters” and “statistics” in a statistics course.