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Lecture 21:  Simple Linear Regression and Simple Correlation 
 

Some Common Sense Assumptions for Correlation and Regression: 

• Both variables are interval or ratio (and not nominal or ordinal). (Hint for exam: I don’t ask you 
whether or not you violate any assumptions on the regression part of the exam, but you will 
need to choose two interval or ratio level variables for this problem). 

•  The data comes from a random sample.  
• There is a logical relationship between the two variables.  (In almost all cases, we are looking 

for cause and effect relationship.) 
• There is a linear relationship between the two variables. 
• For those of you who are going on in statistics or are just very math oriented, there is a final 

assumption that is a bit difficult to understand.  We assume that at each value of the 
independent variable the population of the dependent variable is normally distributed and 
these normal distributions have the same variance (homoscedastic condition.) 

 
Introduction  

Regression allows us to make “predictions” (the air quotes are on purpose – see below) and 
correlation allows us to measure association.   In their simplest form, both regression and correlation 
look at two variables at a time.   (Surprise, surprise but correlations and regressions that limit 
themselves to 2 variables are called “simple regression” and “simple correlation.”)   
 
Regression  

In simple regression we see how we can “predict” the outcome of one variable (usually called y) using 
another variable (x).  The dependent variable (y) is the variable you wish to predict and you will 
predict it using the independent variable (x).  Regression does prediction insofar as we are 
able to estimate y using x and to determine the percentage of variation in y that can be 
accounted for by x.    
 
For example, can we use the number of visitor arrivals here in HI “predict” hotel room occupancy 
rates?  Furthermore, what percentage of the variation in hotel occupancy rates can be accounted for 
by changes in victor arrivals?   Or can SAT scores “predict” college GPA? Can we use a SAT scores 
to “predict” college GPA?  Furthermore, what percentage of the variation college GPA can be 
accounted for by changes in SAT scores?  
 
Correlation and association   

In correlation we see how closely the two variables under examination are associated.   All 
“association” means is that changes in one variable are associated with changes in another.   We 
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might expect that changes in the “ability to drive a car” is associated with the changes in the number 
of alcoholic drinks one consumes.  We might expect changes in hotel occupancy rates to be 
associated with changes in the number of visitor arrivals.  A change in one variable is associated with 
a change in another variable. 
 
We can use regression and correlations to see one variable (college GPA, hotel room occupancy, 
ability to drive a car, income, etc.) is associated or predicted by several variables at a time. Those 
sorts of tests are called “multiple” correlations and “multiple” regressions.   As you might guess, the 
social world is very complex most social phenomenon are not caused or explained by single factors.  I 
can’t think of a single social science question “Why do people do x?” that can be explained by a single 
factor.  Why people use drugs, commit murder, are poor, spend money, visit Hawaii are all poorly 
explained by single factors or variables.  However, we will limit ourselves to “simple” correlation and 
regression because that is the best way to be “introduced” to a theory.    
 
Logical Relationship? 

The first step to any (simple) correlation or regression problem is to decide whether there is a logical 
relationship between the two variables.   In this step, you are deciding whether or not it is actually 
appropriate to “do” a regression/correlation test for your two variables.  If your two variables do not 
meet the following criteria there is no point in doing a regression/correlation test for your two variables.    
 
If your variables don’t meet the following theoretical criteria, you would stop right here and not do this 
statistical test!  (That being said, in this class you will do a regression/correlation on the test just to get 
the points, even if it does not “make sense” to do this test!) 
 
Here you think about the theoretical relationship between your two variables as if you have 
not yet looked at your data!  So discuss the theoretical relationship between your two 
variables pretending you had a large, random, representative sample from your population. 
 
All of these things will be described below, but in order for a simple regression or correlation test to be 
appropriate you must have: 

• a logical relationship between the two variables 
• a direct cause and effect relationship between the two variables (not a common cause 

relationship) 
• a straight linear relationship between the two variables -- not a curvilinear relationship. (More 

sophisticated regression techniques can deal with curvilinear relationships – just not the one 
we are learning here.) 
 

Logical vs. spurious relationships 

Two variables may change together for many reasons, but if there is no logical relationship, then the 
association is spurious.  For example for some weird reason there is an association between fruit 
sales and race riots.  When fruit sales are up there tend to be more race riots than when fruit sales 
are down. (I could be wrong but here is my explanation: race riots tend to happen in the summer 
when fruit sales are high.  Makes sense I suppose -- who wants to riot in the streets when the 
temperature outside is 20 degrees?)  
 
I found another great example of a spurious relationship on wikipedia:  
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In neither of these examples could you say there is a cause and effect relationship.  The two variables 
are associated – changes in one variable are associated with changes in the other variable – but 
there is not a direct cause and effect relationship.   
 
Remember:   statistical association does lead to statistical correlation but correlation does not 
necessarily imply causation.    

There are two types of causal relationships:  cause-and-effect and common-cause. 
Cause-and-effect relationships exist when one variable causes another variable to change.   

• For example a rise in the number of early drafts a student sends me in statistics is associated 
with getting higher grades on the take home tests.   Since we catch mistakes and the student 
fixes them [before they lower their grade] their grade goes up.  The number of drafts directly 
causes the test grade to go up. 

• Here is an example from business.  Stockbrokers and life insurance sales people start out their 
careers with no clients.  They all start to build a client-base by “cold calling” people on the 
telephone.   So stockbrokers who are beginning their careers might be told “don’t leave the 
office until you have made 100 cold-calls on the phone today.”  Most people who are cold-
called are not interested, but some are.   So a sales person early in their career will see a 
cause and effect relationship between the number of cold calls they make and their income.  
The more cold-calls they make, the greater their income.   

Common-cause relationships exist when two variables change together but neither “causes” the other 
– instead each are affected by “common-cause” factor that affects each variable in the same way.    
 

• For example sitting in front of a class tends to be associated with high grades.  That doesn’t 
mean that one can improve their grades by simply sitting in the front of a class.  It is not cause 
and effect: merely sitting in the front of the class does not directly cause one’s grades to 
increase.  There are other factors that influence both -- perhaps people in front are motivated 
and “want it” more than others and so they sit in the front so there are no distractions.  The 
point is that there is a “common-cause” factor that influences both of these variables “behind 
the scenes” (if you will).   

• Below I discuss the common cause relationship between age and income. 
 
In social sciences (and all sciences) we are most interested in cause and effect relationships.   And 
for correlation and regression we are looking for cause and effect relationships.   
 
So on a test you may be asked to discuss the probability of a logical relationships between 
your two variables:  you want to discuss  

An example of a spurious relationship can be illuminated examining a city's ice cream 
sales. These sales are highest when the rate of drownings in city swimming pools is 
highest. To allege that ice cream sales cause drowning, or vice-versa, would be to 
imply a spurious relationship between the two. In reality, a heat wave may have 
caused both. The heat wave is an example of a hidden or unseen variable, also 
known as a confounding variable.” (http://en.wikipedia.org/wiki/Spurious_relationship) 
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• whether or not it should be cause and effect (or common cause) or no logical relationship 
(discussed above) 

• whether you expect the relationship to be positive or negative (discussed below) 
• whether or not it is linear in nature (discussed below) 

 
If you have to do this on a take home exam [hint hint] be honest!  I will not lower your grade if the two 
variables from your data set are not logically related, do not have a cause and effect relationship, and 
are have no linear relationship!  I will lower your grade if you argue poorly and pretend that your 
variables are related in these ways when they really are not. 
 
For example, sometimes I make people collect data and use it on take home exams.  All students will 
have at least two ratio level variables to use for this statistical test: age and income.   If you think 
about it, the two variables are logically related.  But age does not directly cause income to rise and it 
is not linear.  Since some people might be tempted to cut and paste these words on an exam, I won’t 
explain exactly why, but think about it?  Does age directly cause income to rise [and eventually fall]?  
No, but something associated with age does.  So if you were to use these two variables on an exam, 
that would be fine but don’t pretend the relationship is cause and effect and linear when it probably is 
not.  Your grade will be higher if you honestly explain why this is so! 
 
Linear Relationships 

We are learning “simple linear regression/correlation” so what we are looking for in the scatter plot is 
evidence of a “linear” relationship. Generally, if you were to draw a circle around all the data points, 
the more it looks like an elongated ellipse and not a circle the “more linear” the relationship is.   
 
In the picture above, noticed how (a) (b) and (c) each show evidence of a linear relationship:  the dots 
are scattered but they seems to resemble a line more or less.  Notice how (g) shows no relationship 
whatsoever. 
 
The scatter plot above of Wave Height and Surfers in the Water show evidence of a linear 
relationship as well. 
 

Positive and Negative relationships 

X is the horizontal axis.  Y is the vertical axis. 
Where the lines x and y meet [where the two lines would cross] each is equal to zero.  As you move 
to the right on the x [or horizontal] axis x is getting bigger.  As you move up on the y [or vertical] axis y 
is getting bigger. 
 

Positive relationships 

A positive relationship occurs when y increases as x increases.   In the picture above (a) and (b) are 
positive relationships.  See how the dots on the y axis get “higher” or larger as you move to the right 
on the x axis?   
 
Examples of positive relationships: 

• wave height (x) and # of surfers in water at Waimea Bay (y).   We will use this example 
below, but Waimea is one of the premiere big wave surf spots in the world, so one would 
expect more surfers in the water when the waves are big.    Waimea is not a very good surf 
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spot when the waves are smaller so one would expect fewer surfers in the water when the 
waves are smaller.  So as the waves (x) get bigger we would expect more surfers in the water 
(y to get bigger along with x). 

• hours study (x) and grade on exam (y).   In general we would expect that the more hours 
you study for an exam (x) the higher your grade on that exam (y).  So as x increases y 
increases along with it. 

 
Negative relationships 

A negative relationship occurs when y decreases as x increases.  In the picture above (d) and (e) are 
examples of negative relationships.   See how the dots on the y axis get “lower” or smaller as you 
move to the right on the x axis? 
 
Examples of negative relationships: 

• number of years smoking (x) and life expectancy (y).  In general we would expect that the 
more years a person smoked (x) the lower or shorter their life (y) would be.   

• number of alcoholic drinks (x) and the ability to drive a car (y).  As you ingest more 
alcohol (x) your ability to drive a car (y) goes down. 

• hours gamble “games of chance” in a casino(x) and money in your possession (y).  
Games of chance are games like slots, roulette, and craps: unlike poker, these games are 
pure luck.   Casinos are able to build roller coasters indoors and hotels that look like Venice 
Italy because of income created from games of chance.   In general the more hours you 
gamble in a game of chance (x) the less money you will have in your possession (y).   

 
Curvilinear relationships 

Sometimes there are curvilinear relationships between two variables: see (d) (e) and (f) in the picture 
above.  

Basic Curvilinear relationship 

In curvilinear relationships we  expect an increase to a certain extent but then a decrease after a 
while.  This is seen in (f) in the picture above.  Their example is prefect: age (x) and income (y).  If 
you think about it your income is low until you get to about your 20-30’s and grows until retirement 
age and then starts to go down after retirement.    
 
Other examples: 

• Think about the “childbearing years” of a woman:  age (x) and children born (y). Children 
born starts to increase from puberty and is greatest in the late teens to early thirties and starts 
to drop off dramatically in the late 30’s to 40’s.   

• Wave height (x) and surfers in the water at Waimea Bay (y) also probably resembles (f) in 
the picture above.  We would expect the number of the surfers to slowly grow as the waves 
get bigger, but at a certain point the waves are so big that fewer and fewer people have the 
courage and skill to go surfing.  At a certain point perhaps the waves get so large that no 
surfers enter the water.  In fact, I was at Waimea Bay on Jan 28, 1998 when the waves were 
so big that they canceled the “Eddie” contest.  The waves were so big that there were literally 
zero surfers in the water at Waimea Bay.   

• Number of alcoholic drinks (x) and sociability (y).  In small amounts alcohol makes people 
more social – that’s why they have cocktail parties.   It acts as “social lubricant” but it does not 
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mean that if you keep drinking you will get more and more pro-social.  In fact if you keep 
drinking too much you will pass out and not be able to socialize at all! 

• Number of caffeinated drinks (x) and concentration (y).  In small amounts caffeine makes 
people concentrate better – that’s why people drink it at work or to start their day.   But it does 
not mean that if you keep drinking coffee you will concentrate better and better.  In fact if you 
keep drinking too much coffee your concentration starts to falter – have you ever had too much 
coffee and “tweaked out?”   
 

 
Negative and positive curvilinear relationships 

These are known as “exponential” relationships and I cannot for the life of me think of any examples 
of (d) and (e) from the picture below, but you may see this in a scatter plot of your two variables. 

Draw a scatter plot to look for linear relationship. 

Drawing a scatter plot is as simple as placing your variables in pairs and plotting them on the x and y 
axis.   The variable you wish to predict or explain is called the dependent variable and it is always 
placed on the y axis.   The variable you wish to use to explain the relationship with is called the 
independent variable and is placed on the x axis.   (Be aware there are other terms for each of these 
types of variables, but these are the most universal.)   
 

Wave Ht. Number of 
surfers  

2 0 
5 2 
8 10 
12 30 
15 40 
18 45 
20 60 

 
On a scatter plot, the x axis is horizontal and the y axis is vertical.  So in the table above there are 7 
data points to plot:  the first number is the x coordinate and the second number is the y coordinate. 
(2,0) (5,2) (8,10) (12,30) (15,40) (18,45) (20, 60).   Below is the scatter plot of these two variables 
from SPSS.  You will notice that the scatter plot below seems to show a linear positive relationship. 
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Scatter Plot of Wave Ht. and Number of surfers in water at Waimea 
  

 
 

Below is Figure 12.3 from the sixth edition of Statistics: A First Course to illustrate 
the various scatter plots. 

Below we will refer to this picture to discuss positive, negative, linear and curvilinear relationships 
between variables. 
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Simple Linear Regression 

 
Essentially, Simple Linear Regression (or “Ordinary Least Squares Regression”) draws a straight line 
through all of the data points in a scatter plot so that all of the positive deviations from the line cancel 
out all of the negative deviations from the line.  Or another way to look at it:  it draws a straight line 
with the least amount of error.    
 
y - axis 
                                           (x,y)  .                                   y-hat=mx + b 
            error or deviation (y - y-hat) 
 
                                                                                     error or deviation (y - y-hat)              
                m (slope) = rise/run         rise 
                                                                    (x,y)     . 
                             run 
          (x,y)  y intercept 
 
 
                        
                     1                      2  
  x- axis 
 
introductory terminology and symbols for the regression line: 
 
y-hat = m x + b  The equation for a regression line where: 
y-hat =  a computed estimate of the dependent variable (y). 
b = the y intercept (or the value of y-hat when x = zero  or where the line crosses the y axis). 
m = the slope of the regression line (“rise over run” or the increase or decrease in y-hat for each 
change in one unit of x).   
x =  a given value of the independent variable. 
 
So a regression line draws a line through all of the data points where the sum of all deviations in y 
from the y-hat line = 0.   Or:   
Σ(y - y-hat) = 0. 
 
Or another way to look at it:  A regression equation draws a line through all of the data points where 
the “sum of the squared deviations from the y-hat line are smaller than they would be than if any other 
line was drawn through the data points.    Or: 
Σ(y - y-hat)2 = minimum or least value 
(Thus the name “Method of least squares” or “ordinary least squares” regression.)    

 
Standard Error of Estimate (SEE or sy.x) 

 
Couldn’t we compute an average deviation of the spread of all y’s from the y-hat line?   
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2
)ˆ( 2
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yy

=   “average of the sum of the squared deviations from y-hat line” 

 
Funny how the formula above resembles a variance formula...  
 

s2 =

€ 

(x − x)2∑
n −1

= sample variance 

 
 
 
 
 
 
We can just take the square root of this formula to “undo the square.”     
 

2
)ˆ( 2

−

∑ −
n
yy

=   “square root of the average of the sum of the squared deviations from y-hat line” 

                         
Funny how this formula above resembles a standard deviation formula: 

s= 

€ 

(x − x)2∑
n −1 = sample standard deviation   

 
 
“standard error of estimate” 

2
)ˆ( 2

−

∑ −
n
yy

=   “square root of the average of the sum of the squared deviations from y-hat line” 

 

This equation is called the “standard error of estimate” (SEE)= think of it as a standard deviation that 
measures the scatter of the observed values around the regression line (y-hat line).   (n -2 is used 
because each data point consists of two variables but don’t sweat that...).  Recall that “standard 
deviation” is a measure of dispersion, or scatter, or “spread-outed-ness.”  
Only need to know this:  the lower the SEE the lower the error and better the regression line 
estimates the relationship between the two variables.   The lower the SEE the more clustered the 
data points are around the regression line; the less scatter or “spread-outed-ness” of all of the y data 
points from the y-hat regression line.  . Conversely, the higher the SEE the more dispersed, [more 
scattered, more spread-out] the y data points are around the regression line.   Just like standard 
deviation.   
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Below is figure 12.9 from the sixth edition of Statistics: A First Course 
 

 
 
Notice how in (a) the data points  are more clustered around the regression line. There is lower 
“average deviation” from this line. The SEE is lower in (a) than in (b).  When you look at (b) the data 
points are less clustered around the regression line.  There is higher average deviation from this line. 
The SEE is higher in (b) than in (a). 
 
So, avoiding going into a lot of mathematical stuff, just realize that the regression line or y-hat line 
draws a line through all of the data points that minimizes the error of estimating y using x.  Estimating 
y using x is the whole point of regression.  If we can estimate y using x then we can say that x 
“causes” y.    A better way to look at it is “if we can account for a significant amount of ’variation in y 
using x’ then it is logical to assume that x ‘causes’ y.” If changes in y are accounted for by changes in 
x then we say “x causes y.”  If you plug any x into the y-hat line equation then you can get an estimate 
for y.   (There would be error in this estimate, but we won’t get into that in this class.) 
 
All regression does is test the null hypothesis that the slope of the regression line is equal to zero: 
H0:  slope of y-hat = 0    or H0:  B = 0 
H1:  slope of y-hat ≠ 0    H1:  B ≠ 0 
This makes sense:  if the “least squares” regression line’s slope is not zero (or horizontal) then we 
would figure that the x (independent) variable can account for changes in the y (dependent) variable.  
If that doesn’t make sense, you probably didn’t understand the properties of the regression line.   
Make sure you understand it!!!!  Ask questions if you do not. 
 
Essentially we are making an argument that if we could make a scatter plot of the whole population of 
each variable (X= population independent variable & Y= population dependent variable) there would 
be a “population least squares regression line” with it own slope (B). We test to see if the slope of that 
line = 0 (thus the H0: B = 0).   
 
 
 



12 OF 22 

Example of Simple Linear “Least Squares Regression 

 
Here is the background for the example used for this exercise.    Lifeguards regularly keep records of 
wave heights and number of surfers in the water for selected Oahu beaches.    I would like to see 
whether there is a relationship between wave heights and number of surfers in the water at Waimea 
Bay.    Waimea is one of the premiere big wave surf spots in the world, so one would expect more 
surfers in the water when the waves are big.    Waimea is not a very good surf spot when the waves 
are smaller so one would expect fewer surfers in the water when the waves are smaller.   I have two 
ratio-level variables:  waveht = wave ht. in feet at Waimea Bay  &   surfers =  # of surfers in the water 
at Waimea Bay.    Pretend the data comes from randomly selecting observations from the lifeguards 
for 7 days in January and February of this winter  (n=7). 
 

Wave Ht. # of surfers  
2 0 
5 2 
8 10 
12 30 
15 40 
18 45 
20 60 

 
Step #1:  Logical Relationship? 
The first step to any correlation or regression problem is to decide whether there is a logical 
relationship between the two variables.   In this case there is a logical relationship between wave 
height and number of surfers in the water at Waimea.  Since surfers go to Waimea to surf big waves it 
is likely that big waves “cause” people to surf Waimea.  (In reality this might be best described as a 
curvilinear relationship as Waimea does close out become "unsurfable" when the waves get bigger 
than 30 feet, like on Jan. 28, 1998.  But that is exceedingly rare.) 
Step #2:  Draw a scatter plot to look for linear relationship. 
 
Figure 1:  Scatter Plot of Wave Ht. and # of surfers in water at Waimea 



13 OF 22 

 
 
In this case it looks like we have a positive linear relationship.  I would also expect this to be a direct 
cause and effect relationship, (and not a common-cause relationship).  The size of the waves directly 
causes an increase in the amount of surfers in the water at Waimea Bay.   
 
Step #3: Do a regression test.   
For a regression analysis we can still use the familiar seven steps: 
 
1.  State null and alternative hypothesis. 
 
H0:  B = 0 
H1:  B ≠ 0 
 
2. State level of significance or α  “alpha.”  For this problem alpha =.05 
 
3. Determine the test distribution to use – use Z if  # of data points  (x,y) >30 otherwise use t.  

[If t is used:  df=n-2 where n = # of data points (x,y)]       
In this case we have 7 pairs of data so n=7.  Use a t distribution with df=n-2 or df=7-2=5 
 
4. Define the rejection regions.  And draw a picture!   This regression test isTWO TAILED 

tests so α/2 goes into each tail.     
In this case critical t value =  2.571 
 
5. State the decision rule.  
Reject null if TR> 2.571 or TR< - 2.571 otherwise FTR. 
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6. Perform necessary calculations on data and compute TR value.  
TR=  b - Bho 
          Sb 

Wave Ht.(x) # of surfers (y) xy x2 y2 
2 0 0 4 0 
5 2 10 25 4 
8 10 80 64 100 
12 30 360 144 900 
15 40 600 225 1600 
18 45 810 324 2025 
20 60 1200 400 3600 
80 187 3060 1186 8229 

x-bar=11.4 y-bar=26.7    
 
slope or b= n Σxy − Σx Σy 6460 3.396 

 n (Σ x2) - (Σx)2 1902  
y intercept or a = y-bar - (slope * x-bar)= -12.10 
 
 

Wave Ht.(x) # of surfers (y) y hat (y - y hat) (y - y hat)2 
2 0 -5.308 5.308 28.17 
5 2 4.88 -2.88 8.29 
8 10 15.068 -5.068 25.68 
12 30 28.652 1.348 1.82 
15 40 38.84 1.16 1.35 
18 45 49.028 -4.028 16.22 
20 60 55.82 4.18 17.47 
80 187 186.98 0.02 99.013776 

 
SEE= square root of Σ(y - y hat)2 99.01378 19.802755 4.45003 

 n -2  5   
 
Estimated Standard Error = Sb 
 

Sb =

n
xx

SEE
2

2 )()( ∑−∑

  

€ 

=

∑
2

(y− ˆ y )
n − 2

∑(x
2
) −

(∑ x)
2

n

   =  
7143.271
45.4

4838.16
45.4   =0.27      

 
Finally we can calculate the Test Ratio or TR: 
 
TR= b-BHo/Sb  = 3.396  - O 3.396 12.579 

 0.27 0.27  
 
7. Compare TR value with the decision rule and make a statistical decision.  (Write out 

decision in English!) 
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Since 12.5 is greater than 2.571 we reject the null and conclude the alternative.   We conclude that 
there is a slope to the population regression line and a meaningful regression relationship does exist 
between wave height and # of surfers in the water at Waimea Bay.   We are 95% confident of this 
statement.    
 
Using the Computer Makes It So Much Easier... 

Given all that tedious math in step 6, you can see why we always use the computer when performing 
a regression in the real world.   The computer calculates the TR value, the p-value, the slope and the 
y intercept of the regression line for us.  Below is a portion the SPSS output for this problem: 
	

Coefficientsa 
Model Unstandardized 

Coefficients 
Standardized 
Coefficients 

t Sig. B Std. Error Beta 
1 (Constant) -12.102 3.514  -3.444 .018 

height of 
waves 

3.396 .270 .985 12.581 .000 

a. Dependent Variable: number of surfers in water 
 
• Write out the equation for the regression line using the computer output: y-hat = mx + b 

m = slope  and b = y intercept.   In the output the slope (b) is the lower number under the “B” 
column: 3.396.   The y intercept (b) is the top number under the same column:  -12.101. 
 Therefore our “least squares regression line” equation:    y-hat = 3.396x - 12.101 

 
• The TR value is lower number under the “T” column:  12.581.   The slope (b)= 3.396 and is found 

as described above.  Sb is the lower number under the “Std. Error” column:  .270 
TR= b-BHo = 3.396  - O= 3.396= 12.58 
          Sb 0.270 0.270  
 
Use p-value on the take home test for this problem!  It’s easiest of all.   

Thus far in this class I hope you have figured out that all seven steps lead to to the p-value. When you 
leave this class, you can skip the seven steps and just look at the p-value. 
 
Note whether the regression equation is significant by looking at the p-value.  We find the p-value as 
the lower number under the “Sig.” column.  If it is less than our level of significance (α) it is significant.  
If it is greater than our α it IS NOT significant.   (Our p-value is not =.000!  SPSS ran out of decimal 
points!) Our p value <.001 which is less than .05 and is SIGNIFICANT!! 
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Decision rule for statistical significance using p-value 

• If p-value < α  or “alpha” it is significant!    [Typically we use alpha =.05] 
• If p-value >= α  or “alpha” it is NOT significant!    [Typically we use alpha =.05] 

So.... 
 

• If p-value < .05 ”it is significant!     
If p-value >= .05  it is NOT significant!     
 

 
 
Step #4: Do a regression/correlation test to measure strength of association. 
 
See below 
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Simple Linear Regression (and correlation) 
 

Again avoiding the whole math gig, regression (specifically r r2) tells us exactly how much of the total 
variation in y that is accounted for by the introduction of the x variable.   Using our example above, we 
could see how much of the variation in the number of surfers in the water at Waimea Bay is 
accounted for by variations in the height of the waves.   
To understand what this r2 thing means, we must go back to the regression line: 
 
y - axis     .  y* (single point) 
                                                                                 unexplained deviation (y* - y-hat)  
                         total deviation (y* - y-bar) 
 
                                                                                     explained deviation (y-hat - y-bar)              
 
       
y-bar       y-bar 
 
 
                        
                     1                      2  
  x- axis 
If we sum all of these ‘deviations’ then we can have a measure of ‘variation.’ 
total variation Σ( y* - y-bar)=  explained variation Σ(y-hat - y-bar) +  unexplained variation 
Σ(y* - y-hat).2 

coefficient of determination = r2 
 

The most important part of regression is a number called r2 = coefficient of determination.  (The book 
covers this on pages 524-525 in the fifth edition and pages 552-554 in the sixth edition.) R2 is a ratio 
(or fraction) of the explained variation over the total variation. 
r2 =  explained variation =  SSR  =  Σ (y-hat - y-bar)2 

           total variation          SST       Σ (y* - y-bar)2 

 
The r2 or “coefficient of determination” is a ratio or fraction that tells us the amount of total variation in 
the y variable explained by the x variable (using the regression line).   
 
In this class we will use SPSS to compute r2. 
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Below is the full SPSS output for a regression analysis: 
 

Regression 
 

 
 

Model Summary 
Model 

R R Square 
Adjusted R 

Square 
Std. Error of 
the Estimate 

1 

1 
 
 
 

.985a .969 .963 4.45003 

a. Predictors: (Constant), height of waves 
 
 

ANOVAb 
Model Sum of 

Squares df Mean Square F Sig. 
1 Regression 3134.415 1 3134.415 158.282 .000a 

Residual 99.014 5 19.803   
Total 3233.429 6    

a. Predictors: (Constant), height of waves 
b. Dependent Variable: number of surfers in water 
 
 

Coefficientsa 
Model Unstandardized 

Coefficients 
Standardized 
Coefficients 

t Sig. B Std. Error Beta 
1 (Constant) -12.102 3.514  -3.444 .018 

height of 
waves 

3.396 .270 .985 12.581 .000 

a. Dependent Variable: number of surfers in water 
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Look at the second box "Model Summary."   For this example our r2 or “coefficient of determination” is 
under the R square column and r2 = .969 (can be rounded to .97).   I highlighted this in green 
 
Finally we can explain the r2 value in English -- relating it to our variables!!!    
 
In this case we would say that “97% of the total variation in # of surfers in the water at Waimea Bay is 
explained by variations in wave height.”  
 
Or you could also say: 
 
“97% of the total variation in # of surfers in the water at Waimea Bay is explained by variations in the 
height of the waves at Waimea Bay.” 
 
Either one is correct, it just depends upon which makes the most sense to you. 
 
 
The regression line and interpreting its slope 

Look at the SPSS output above.  The slope of the regression line in blue like this and the y intercept is 
in yellow like this.  So the equation of the regression line is:  

y-hat=3.396x -12.102    

So the slope =  3.396  and  to get the y intercept you plug zero into the that  equation where you see 
x.   Like this: 

y-hat=3.396(0) -12.102 

y-hat =-12.102   this means when x=0 y-hat =-12.102 the (x,y) coordinates are (0, -12.102).   That 
means when the waves were zero feet we would expect negative 12 people in the water.  Obviously 
that’s impossible, but you get the idea.   The y-intercept is the point at which the line passes the y 
axis.   In this case the y-hat line cross the x axis at -12.102  like this 
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So what does the slope of 3.396 mean? 

So for every one unit increase in x or height of waves, the number of the surfers in the water 
increases by 3.396.  Obviously there is no such thing as 3.396 surfers.  So let us round 3.396 to 3.  
So for every one foot increase in the waves the number of surfers in the water increases by about 3.  
When we increase the waves by ten feet we expect there to about 33.96 more surfers in the 
water (3.396x10=33.96). 

So y-hat is an estimate for y given x.   So if the waves are 10 feet we expect the number of surfers in 
the water to be 

y-hat=3.396(10) -12.102 

y-hat =33.96-12.102    

y-hat=21.858 

If the waves are 20 feet we expect the number of surfers in the water to be 

y-hat=3.396(20) -12.102 

y-hat =67.92-12.102    

y-hat=55.818 

So what’s the difference between 55.818 and 21.858?   55.818-21.859=33.96!  See?   That’s why 
above I said “When we increase the waves by ten feet we expect there to about 33.96 more 
surfers in the water.” 

Correlation -- r is hard to understand in plain English.   

coefficient of correlation = r 
 

If we take the square root of r2 we get r = coefficient of correlation.  The number itself is sort of 
meaningless when compared to r2.    The r2 is something meaningful.  Recall it is the percent of 
variation in y explained by x.  So for our Waimea surfing example it was the percentage of variation in 
the number of surfers in the water explained by the variations in the height of the waves.    
 
 So sadly, r is simply the square root of something meaningless.  Then we add a sign – either positive 
or negative to it based upon the slope of the regression line.    
 
So r always falls somewhere between -1 and +1.  The positive or negative value comes from the 
slope of the regression y-hat line.  If the slope is negative, r is assigned a negative value.  If slope is 
positive r is assigned a positive value.  Each extreme is a “perfect correlation” and 0 implies “no 
correlation.”  The closer r is to 1 or -1 the stronger the correlation.   The stronger the correlation the 
more the scatter plot resembles a clustered ellipse.  The sign of r tells us whether there is a 
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positive or negative relationship between the x and y variables.  Negative correlations imply 
negative slopes for regression line and positive correlations imply positive slopes.  
 
The “strength” of r actually depends upon previous research, so I will give you a contrived or “pretend” 
rule that we will use for this class only.  But remember for the r  or “coefficient of correlation” to 
be a meaningful number we must have a "significant correlation" (p<.05 or p< your alpha from 
step 2)! 
 
Recall the “sign” of r matters!  
 

• 0.00< r <0.33  = “weak relationship“(the mathematical sign (+ or -) determines whether or not 
it’s a positive or negative relationship) 

• 0.34< r <0.66  = “moderate relationship“(the mathematical sign (+ or -) determines whether or 
not it’s a positive or negative relationship) 

• 0.67< r <1.0  = “strong relationship“(the mathematical sign (+ or -) determines whether or not 
it’s a positive or negative relationship) 

 
 
 
 
While you can find all of this information in the SPSS regression output above, SPSS also has 
separate correlation output.  Below is the SPSS output for a the correlation of these two variables: 
 
 

Correlations 

 height of 
waves 

number of 
surfers in water 

height of waves Pearson Correlation 1 .985** 
Sig. (2-tailed)  .000 
N 7 7 

number of surfers in water Pearson Correlation .985** 1 
Sig. (2-tailed) .000  
N 7 7 

**. Correlation is significant at the 0.01 level (2-tailed). 
 
 
The “r” from the SPSS output above is the  r  or “coefficient of correlation.” In this case r = .98457. We 
can see that the R= .985 again and most importantly we can see the p-value for the correlation test in 
the second "Sig. (2-tailed)" box.   In this case it is p=.000 which by now we all know "really means" 
that p<.001. Because the p<.001 the correlation is "significant" and .98457 is very close to a perfect 
correlation of +1 we can say represents "a very strong positive relationship." 
 
So in summary we see if the regression and correlation test are "significant" to tell us if there is a 
meaningful relationship between the two variables.   Then we have two related numbers that tell us 
how closely related the two variables actually are:  r and r2.    
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