Chapter 4 – Functional Anatomy of Prokaryotic and Eukaryotic Cells

Comparing prokaryotic and eukaryotic cells: Overview

- Prokaryotic and Eukaryotic cells are chemically similar
 - Contain nucleic acids, proteins, lipids, carbohydrates
 - Same kinds of chemical reactions
- Differences are primarily in ______ and _____ structures, cell membrane
- Chief characteristics of Prokaryotes
 - DNA is not enclosed within a membrane (nucleus)
 - DNA is usually organized into one circular chromosome
 - DNA is not associated with proteins called histones
 - No membrane-enclosed organelles
 - o Cell walls usually contain complex polysaccharide, peptidoglycan
 - Usually divide by binary fission splitting of cell in two
- Chief characteristics of Eukaryotes
 - DNA is found in the cell's nucleus
 - DNA is organized into multiple, linear chromosomes
 - DNA is associated with histones
 - Have membrane enclosed organelles
 - o Cell walls, if present, are chemically simple
 - Cell division involves mitosis complex mechanism

The Prokaryotic Cell

The Size, Shape, and Arrangement of Bacterial Cells

- Bacteria come in many sizes, several shapes
- Most range from 0.2 to 2.0 µm diameter, 2 to 8 µm in length ٠
- Three basic shapes •
 - o _____ (pl, cocci) _____
 - o _____ (pl, bacilli) _____
 - o ______ shaped
- Coccus

• Usually round, can be _____, ____ or flattened

- Bacillus
 - Most appear as single rods
 - Bacillus (bacterial shape) not = *Bacillus* (bacterial genus)
- Spiral
 - o Have ______ twists

 - Vibrio look like ______
 Spirilla helical, ______ shape; rigid bodies
 - Use flagella to move
 - Spirochetes helical and
 - Move using axial filaments
- Other shapes include:
 - Star shaped
 - o Rectangular, flat
 - o Triangular

- Genetics determines bacterial shape
 - Monomorphic always maintain ______
 - Helps in identifying bacteria
 - Pleomorphic can have _____
 - Often due to ______
 - More difficult to identify

Structures external to the cell wall

- Glycocalyx a "_____" on the _____ of bacteria
 Viscous, _____ polymer; external to cell wall
 - - Composed of polysaccharides, polypeptides, or both
 - Made inside cell, ______ to the outside

 - Two general types of glycocalyx
 Capsule _____, ____ attached to cell wall
 - Slime layer _____, _____ attached to cell wall
 - Capsules can be important in contributing to _____
 - Only ______ *B. anthracis* causes anthrax
 - Can protect bacteria from
 - Capsule made of sugars called extracellular polysaccharide (EPS)
 - Allows bacteria to ______ surfaces
 - *S. mutans* attaches to surface of teeth in mouth; causes tooth decay
- Flagella long appendages that
 - Flagella (a flagellum) give bacteria
 - Ability to move ______
 - Three basic parts to flagellum
 - Filament
 - Long, region
 - Contains protein called flagellin
 - Hook
 - Slightly wider than filament
 - Contains different protein
 - _____ to cell wall
 - Basal body
 - _____ flagellum to cell wall, plasma membrane
 - Acts as to move flagellum
 - Flagella can be arranged four different ways
 - Monotrichous _____ flagellum

 - Peritrichous flagella _____ cell
 - Cells without flagella are atrichous
 - Flagella move the cell by _____
 - Basal body rotates long filament
 - Movement requires continuous source of energy
 - Counterclockwise rotation = "____" or "____"
 - _____ movement in _____ direction

- Clockwise rotation = "____"
- _____, random _____ in direction Taxis _____ towards (positive) or away (negative) from _____
- - Environment includes chemicals (chemotaxis), light (phototaxis)
 - Positive taxis (_______ attractant) involves more runs than tumbles (turns)
 - Negative taxis (repellant) involves more tumbles (turns) than runs
 - Taxis achieved by balancing ______ to move in desired direction
- Axial filaments bundles of ______ that _____ cell
 - Found uniquely in _____
 - Located underneath an outer sheath
 - Rotation moves outer sheath
 - Corkscrew, spiral motion
- Fimbriae and pili Short, hairlike appendages
 - Not used _____
 - o Fimbriae
 - Used to
 - N. gonorrhoeae (gonorrhea) sticks to mucous membranes via fimbriae
 - No ______, no ______
 - o Pili
 - Used to ______ between bacteria
 - Process called

The Cell Wall

- Structure responsible for shape of cell
- Provides protection to cell •
- Bacterial cell wall made of _____
 - Consists of _____ (NAM or NAG); carbohydrate backbone
 - Linked by ______ to form lattice around cell
- Cell wall arrangement used to classify 2 groups of bacteria
 - Gram-positive cell walls
 - ; ______ layers of peptidoglycan next to cell membrane
 - Also contain ______ acid
 - charged
 - Functions in moving positive ions in/out of cell, prevent cell wall breakdown
 - Gram-negative cell walls
 - gative cell walls ______; a ______ of peptidoglycan next to cell membrane
 - More susceptible to breakage
 - Found in ______ space in between two membranes
 - Inner plasma membrane and outer membrane
 - Outer membrane made of:
 - (LPS)
 - Lipoproteins
 - Phospholipids

- Functions of outer membrane:
 - Helps evade immune system
 - Provides barrier to antibiotics, digestive enzymes
- Proteins called ______ in outer membrane
 - Form channel
 - Allows _____ into cell

Atypical cell walls

- Acid-fast cell walls
 - Contain waxy lipid, _____
 - Located outside ______ of peptidoglycan
 - Found in _____, *Nocardia*
- o Archaea
 - Don't have ______; have ______ instead
 - Or may not have cell wall
- 0 Mycoplasma
 - known bacteria
 - Have _____ walls
 - Have ______ in plasma membrane, protect from _____ (rupture)

Structures Internal to Cell wall

- Plasma (cytoplasmic) membrane
 - Thin layer, encloses _____ of cell

 - - within membrane perform various functions
 - Channels, structure, transport
 - Phospholipids and proteins are _____ 0
 - Constantly in ______
 - Viscosity of olive oil
 - Referred to as fluid mosaic model
 - Functions of membrane:
 - Selective barrier for materials into/out of cell

 - Selective permeability _____ molecules can pass barrier _____ (ie proteins) _____ pass too big to squeeze through
 - _____ pass _____ on hydrophilic heads repel ions •
 - _____ molecules (ie oxygen, carbon dioxide, nonpolar
 - organic molecules) _____ pass core of membrane is hydrophobic
 - _____ proteins allow specific molecules to pass
 - Involved in metabolism breakdown of nutrients to produce ATP
- Cytoplasm

0

- Substance of cell ______ the membrane
- Contains:
 - About 80% water
 - Proteins

- Carbohydrates
- Lipids
- Inorganic ions
- Protein filaments help maintain shape of some bacteria
- Nuclear Area
 - Sometimes called _____
 - Contains cell's DNA molecule called a _____
 - Chromosome attached to plasma membrane
 - Bacteria also contain _____ ____ DNA molecules
 - Not connected to chromosome
 - Often carry useful genes, ie antibiotic resitance
 - Can be ______ between bacteria
- Ribosomes
 - Responsible for ______
 - Ribosomes are composed of proteins and _____(rRNA)
 - Bacterial ribosomes (_____) consist of two subunits:
 - Small subunit; 30S subunit
 - Large subunit; 50S subunit
 - "S" a reference to size
- Inclusions
 - o _____ found within cytoplasm
 - Can include stores of _____
 - Others provide specific functions
 - Magnetosomes, gas vacuoles, carboxysomes
- Endospores
 - Specialized "resting" cell; bacterial seed
 - Highly durable; can survive long time, extreme conditions
 - Found in some gram-positive bacteria
 - Eg, Some species of _____, _____
 - Endospores form inside "vegetative" or growing cell
 - Process called sporulation or sporogenesis
 - Occurs when some nutrients are low
 - o Endospore returns to ______ state via germination
 - Important in food industry
 - Resistant to many processes such as heating, freezing, chemicals
 - Can cause disease

The Eukaryotic cell

Typically ______, structurally more ______ than prokaryotic cells

- Flagella and Cilia
 - Extensions from cell used for cellular locomotion
 - o Flagella
 - Long, few in number
 - Move in _____ manner (not rotational)
 - *Euglena*, an algae, use flagellum

- o Cilia
 - Short, numerous
 - Protozoa, such as *Tetrahymena*, use cilia to move
 - Cilia in lungs move foreign material out of lungs
- Flagella and cilia are:
 - anchored to membrane by basal body
 - made up of microtubules
- Cell wall and glycocalyx
 - Cell walls generally ______ than prokaryotic cell walls
 - Plants and algae have polysaccharide (_____) cell wall
 - Fungi have polysaccharide (_____) cell wall
 - Many eukaryotes have no cell walls
 - Some eukaryotes have _____ covering
 - Help strengthen cell surface, attach cells together
- The plasma (cytoplasmic) membrane
 - Very similar in structure, function to _____ membranes
 - Differences in proteins found in membrane
 - Also contain carbohydrates, _____ (a lipid) in membrane
- Cytoplasm
 - Substances inside membrane, outside of nucleus
 - Cytosol refers to _____ portion of cytoplasm
 - Major differences:
 - Presence of complex internal structures called ______
 - Provides support, shape, movement
 - _____ (ie, metabolism) are found in organelles
- Ribosomes
 - Found ______ or attached to ______
 - Responsible for _____
 - Larger than prokaryotic ribosomes (_____)
 - Small subunit, 40S subunit
 - Large subunit, 60S subunit
 - Free floating ribosomes make proteins for use inside the cell
 - Membrane-bound ribosomes make proteins to be attached to membranes or for outside the cell

Organelles

- Structures with specialized functions
 - Not found in prokaryotic cells
- Nucleus
 - Stores the cell's _____
 - DNA is linear, not circular
 - Surrounded by double membrane called _____
 - Both look like plasma membrane
 - o ______ channels in membrane
 - Allow molecules to move into and out of nucleus

- _____ a structure within nucleus
 - _____ for ribosomes made here
- o DNA in cell combined with proteins called histones
 - Histones not found in prokaryotes
- Endoplasmic reticulum, ER
 - Network of flattened _____
 - o _____ from nucleus
 - Two types of ER:
 - Rough ER
 - Covered with ______
 - Synthesizes _____, phospholipids
 - Smooth ER
 - Synthesizes phospholipids, _____, ____,
- Golgi complex
 - Stack of membranes
 - o _____ and _____ proteins
 - Forms glycol proteins, glycolipids
- Lysosomes
 - o ______ formed from Golgi complex
 - o Contain ______ enzymes
 - various molecules, including ______
- Peroxisomes
 - o Similar to lysosomes, smaller
 - Metabolize some molecules, ie _____, ___
 - o Destroy ______ (alcohol, hydrogen peroxide)
- Vacuoles
 - A space in the cytoplasm
 - Can be used to _____
 - Plant cells can store metabolic wastes, toxins; provide cell strength
- Mitochondria
 - o Location of _____
 - Double membraned
 - Metabolic enzymes that make ATP located on ______
 - o Mitochondria contain own DNA, _____ ribosomes
- Chloroplasts
 - Site of _____

 - Double membrane
 - Also contain own DNA, _____ ribosomes

Evolution of eukaryotes

- Biologists believe that ______ evolved from ______ cells
 - Pro- and eukaryotes very ______
 - Main difference is that eukaryotes have ______
- Endosymbiotic theory
 - bacteria ______ smaller bacteria

- Smaller bacteria perform special function, like ______
- Chloroplasts and mitochondria
 - Contain own DNA
 - Contain 70S ribosomes, similar to that found in bacteria