

Module 11

Adaptive Immunity

Chapter 17

Adaptive Immunity

Lectures prepared by Helmut Kae

The Immune System

- Innate immunity: defenses against any pathogen
 - Reacts the same way every time
- Adaptive immunity: induced and adapts to a specific microbe or foreign substance
 - Has memory component, major difference from innate immunity

Dual Nature of Adaptive Immunity

- Two components to adaptive immunity
- Humoral immunity: immunity mediated by antibodies
 - Aka antibody-mediated immunity
 - Control of freely circulating pathogens
 - Via B cells
- Cellular immunity: immunity mediated by cells
 - Aka cell-mediated immunity
 - Control of intracellular pathogens
 - Via T cells

Figure 17.20 The dual nature of the adaptive immune system.

Dual Nature of Adaptive Immunity

 T and B cells develop from stem cells in red bone marrow

Figure 17.8 Differentiation of T cells and B cells.

Humoral Immunity

- Immunity mediated by antibodies
 - Aka antibody-mediated immunity
 - Control of freely circulating pathogens
 - Via B cells

Antigens and Antibodies

- Antigen (Ag): a substance that stimulates the immune system
 - Often external structures of pathogens
 - Or pollen, egg whites, cells & tissues
- Antigens in body are recognized by antibodies

The Nature of Antibodies

- Antibodies are aka immunoglobulins (Ig)
- Antibodies are made in response to an antigen
 - Recognize and bind to a specific antigen
- Antibodies are "Y-shaped" proteins

Figure 17.3ab The structure of a typical antibody molecule.

© 2013 Pearson Education, Inc.

Antibody Binding

- Function of antibodies varies on class of Ig molecule
- 5 lg classes

- IgG: monomer
- Most abundant, 80%
- Roams, protects body fluids, blood and lymph
- Protect against bacteria, viruses, toxins in blood, enhance phagocytosis
- Protect fetus and newborn
- Long lived
 - Half-life = 23 days

- IgM: pentamer (5)
- Stays in bloodstream
- First antibody produced in response to infection, short-lived
 - Used in diagnosing pathogen in early stages of infection
 - Half-life = 5 days
- Effective in agglutinating antigens, enhances phagocytosis against bacteria

- IgA: monomers or dimers
- **10-15%**
- Most common in mucous membranes and body secretions
- Prevent adherence of microbes to mucosal surfaces
- Short-lived
 - Half-life = 6 days

- IgD: monomer
- 0.2% of serum antibodies
- In blood, in lymph, and on B cells
- On B cells, initiate immune response
- Half-life = 3 days

- IgE: monomer
- 0.002%
- Bind to mast cells, basophils
- Involved in allergic reactions
 - Stimulates histamine release
- Attracts phagocytes, causes hay fever
- Binds to parasitic worms recruit eosinophils
- Half-life = 2 days

B cells and humoral immunity

- Protection mediated by antibodies
- Produced by activating lymphocytes, B cells
- Activation of naïve B cells starts with exposure to "free" or "extracellular" antigens

Activation of B Cells

- Naïve B cells carry B cell receptors (BCR) on cell surface
 - "Antibodies bound to cell membrane"
 - 100,000+ BCRs, all bind to same antigen
 - Each B cell binds to unique antigen
- Binding of antigen activates naïve B cell

Activation of B Cells

Cardiovascular system

Activated B cell undergoes clonal expansion

attached to

circulating antibodies

Most clones become plasma cells → antibody producers

Activation of B Cells

- Major histocompatibility complex (MHC) expressed on mammalian cells
- T-dependent antigens
 - Ag presented with MHC to T_H cell
 - T_H cell produces cytokines that activate the B cell
- T-independent antigens
 - Stimulate the B cell to make Abs without help of T_H cell

Figure 17.6 T-independent antigens.

Figure 17.4 Activation of B cells to produce antibodies.

- Immunoglobulin receptors on B cell surface recognize and attach to antigen, which is then internalized and processed. Within the B cell a fragment of the antigen combines with MHC class II.
- MHC class II–antigenfragment complex is displayed on B cell surface.
- Receptor on the T helper cell (T_H) recognizes complex of MHC class II and antigen fragment and is activated—producing cytokines, which activate the B cell. The T_H cell has been previously activated by an antigen displayed on a dendritic cell (see Figure 17.10).
- B cell is activated by cytokines and begins clonal expansion. Some of the progeny become antibody-producing plasma cells.

Antigen-Antibody Binding

Antibody-antigen binding results in a number of responses

- Agglutination
- Opsonization
- Activation of complement
- Antibody-dependent cell-mediated cytotoxicity
- Neutralization

The Results of Antibody Binding

Agglutination

- Reduces number of particles to clean-up
- Enhances phagocytosis

Opsonization

Enhancement of phagocytosis

The Results of Antibody Binding

Antibody-dependent cellmediated cytotoxicity

 Destruction by cells that remain external to target

Neutralization

 Inactivation of viruses, toxins by blocking adherence

The Results of Antibody Binding

Activation of complement

Causes inflammation, cell lysis

Cellular Immunity

- Immunity mediated by cells
 - Aka cell-mediated immunity
 - Control of intracellular pathogens
 - Via T cells

T Cells and Cellular Immunity

- Intracellular antigens (viruses, some bacteria) are not exposed to antibodies
 - Evade humoral defense mechanisms
- T cells help combat intracellular pathogens
 - Also recognize "non-self" cells cancer, foreign cells
- T cells bind to specific to antigens via T cell receptor (TCR)

T Cells and Cellular Immunity

- T cells recognize antigens processed by antigenpresenting cells (APC)
 - Include macrophages, dendritic cells
- APC phagocytize antigen, process it, put it on surface via MHC molecule
 - "Present" antigen fragment to T cells
- Binding of TCR to antigen fragment activates T cells
 - Leads to clonal expansion → most become mature T cell, some become memory cells
- Response depends on type of T cell activated

T Helper Cells

- CD4⁺ or T_H cells
 - Activated T_H cells produce many kinds of cytokines – chemical signals that communicate with other cells

Activation of T Helper Cells

Activation of T Helper Cells

- Activated T_H coordinate adaptive immune response
- Release cytokines that recruit and activate immune cells
 - T_H1 produce IFN-γ, which activates cells related to cell-mediated immunity, macrophages, and Abs
 - -T_H2 activate eosinophils and B cells to produce IgE
 - T_H17 stimulate the innate immune system
 - TF stimulate B cells to produce plasma cells and are involved in class switching

T Cytotoxic Cells

- CD8+ or T_c cells
- Target cells are self-cells (host cells) carrying processed internal antigens
- Activated into cytotoxic T lymphocytes (CTLs)

Activation of T Cytotoxic Cells

Activation of T Cytotoxic Cells

- Kill by inducing apoptosis -> programmed cell death
- Cell shrinks, implodes
- Remains digested by macrophages

Apoptosis

B cell undergoing apoptosis

Normal B cell

Extracellular Killing

- Eosinophils attack large parasites
 - Too large to phagocytize
 - Swarm around parasites

 NK cells can attack any "abnormal" cell

(b) Eosinophils adhering to the larval stage of a parasitic fluke.

- Tumor cells, viral infected cells
- Non-specific
- Kill like CTLs, induce apoptosis

Extracellular Killing

(a) Organisms, such as many parasites, that are too large for © 2013 Pearson Education, Incingestion by phagocytic cells must be attacked externally.

Cytokines: Chemical Messengers

- Immune cells communicate with each other via cytokines
 - Interleukins: serve as communicators between WBC
 - Chemokines: induce migration of leukocytes
 - Interferons: protect against viral infection
 - TNF- α : important in inflammation, toxic to tumor cells
- Overproduction leads to cytokine storm

Immunological Memory

- Antibody titer: amount of antibody in serum
 - Indicator of intensity of humoral response
- Two responses:
 - Primary response
 - Slow, relatively weak
 - Secondary response
 - Fast, intense
 - Due to memory cells
- Response is similar for T cells

Immunological Memory

Primary response

- No antibodies for 4-7 days
- Slow rise in antibody titer
- Peaks in about 10-17 days

Secondary response aka "memory"

- Reached peak in 2-7 days
- Lasts many days
- Greater in magnitude

Types of Adaptive Immunity

- Naturally acquired active immunity
 - Resulting from infection
- Naturally acquired passive immunity
 - Transplacental or via colostrum
- Artificially acquired active immunity
 - Injection of Ag (vaccination)
- Artificially acquired passive immunity
 - Injection of Ab