Module 12

Applications/Disorders of the Immune System
Active vs Passive Vaccination

- **Active vaccination**: introduction of antigen to stimulate immune response
 - Long lasting protection
- **Passive vaccination**: introduction of protective or neutralizing antibodies
 - Short term protection
Vaccines

- **Vaccine**: suspension of organisms or fractions of organisms that induce immunity
 - Early 1700’s, exposed smallpox scabs to veins
 - Edward Jenner developed smallpox vaccine in 1798

- Development of vaccines most important application of microbiology
 - Jenner’s work won him Nobel Prize

Figure B

Vaccine licensed

Reported number of cases

Year
Principles and Effects of Vaccination

- Main purpose of active vaccination \rightarrow stimulate memory cell production
 - “Vaccine” for small pox was infection with cowpox
 - Closely related to smallpox, milder symptoms
 - Stimulates memory cells against cow and smallpox

- Herd immunity works by immunizing most of a population
 - Protects susceptible people by limiting spread

- Several types of vaccines exist
Attenuated Whole-Agent Vaccines

- Living but attenuated (weak) microbes
- Live vaccine, mimics infection more effectively
- Can achieve lifelong immunity, especially against virus
- Attenuated microbe derived in lab from many mutations
- But, possibility of “back mutation” to virulent strain
 - Not used on people with weak immune systems
Attenuated Whole-Agent Vaccines

Attenuated Donor Master Strain

Attenuated Vaccine Strain: Coat of Virulent strain with Virulence Characteristics of Attenuated Strain

New Virulent Antigenic Variant Strain
Inactivated Whole-Agent Vaccines

- Microbes that have been killed
- Usually killed by chemicals, formalin or phenol
- Often used in immune compromised people
Toxoids

- Inactivated toxins
- Directed at toxins produced by pathogen
- Require occasional **boosters**: periodic shots given to maintain effectiveness of vaccine
Subunit Vaccines

- Use only antigenic fragments of microbes
- Aka acellular or recombinant vaccines
- Choose antigen that best stimulates immune response
- Safer – cannot reproduce, fewer adverse effects
Conjugated Vaccine

- Antigen attached to polysaccharide
- Polysaccharides help increase immune response
Nucleic Acid Vaccines

- DNA vaccines
- Newest, most promising
- No commercial vaccines yet
- Injection of “naked” DNA, often as plasmid, into muscle
 - Results in production of protein that stimulate immune response
- DNA can be easily degraded, so it may not have long lasting effectiveness
Nucleic Acid Vaccines
The Development of New Vaccines

- Vaccine development decreased until recently
- Introduction of viral culture techniques has allowed growth of viral vaccines
- The ideal vaccine would include
 - Eating instead of injection
 - Lifelong immunity from one dose
 - Stable without refrigeration
 - Affordable
The Development of New Vaccines

- New vaccines for drug addictions, Alzheimer’s disease, cancer
- Currently, 20 injections required for children
 - Additional combination vaccines would be beneficial
 - Routes other than injection
 - Intranasal spray, skin patches
Safety of Vaccines

- No vaccination is 100% safe
- Some risk involved in receiving vaccines
 - Sometimes they cause disease
 - Rota virus causes infant diarrhea
 - In some, vaccine caused intestinal blockage
- Some tried to link MMR to autism
 - Links unsubstantiated
- Overall, very low risk is worth the great gain of immunity
Chapter 19

Disorders of the Immune System
Hypersensitivity

- Abnormal antigen induced response
 - An undesired reaction of the immune system
 - Aka allergies
 - Antigen is called allergen
Hypersensitivity

- Occurs when individual is sensitized by initial exposure to allergens
 - Generates memory cells against allergen
 - 2nd exposure stimulates immune response
- Reactions fall into 4 categories
 - Type I, II, III, IV
Type I (Anaphylactic) Reactions

- **Anaphylaxis**: “the opposite of protected”
- Occurs when allergens combine with IgE antibodies
 - IgE+allergen binds to mast cells, basophils
 - Binding triggers release of histamine

Other effects are mucus secretions in nose, difficulties breathing
Systemic anaphylaxis

- Aka anaphylactic shock
- Results upon second exposure to injected allergens
- Blood vessels enlarge \rightarrow ↓ blood pressure \rightarrow shock
- Reactions can be fatal in minutes
- Treated with epinephrine injection \rightarrow constricts blood vessels
- Allergens include penicillin, insect stings, jellyfish stings
Localized Anaphylaxis

- Associated with inhaled or ingested allergens
- Inhaled allergens sensitize mast cells in resp. tract
 - Re-exposure → congested nasal passage, sneezing
 - Antihistamines neutralize effects of histamine

Pollen and dust mites, two common causes of localized anaphylaxis
Localized Anaphylaxis

- Ingested allergens into GI tract can sensitize individual
- Result in GI upset, hives
- May result in systemic anaphylaxis if serious
- Most common food allergens are eggs, peanuts, tree-grown nuts, milk, soy, seafood, wheat, and peas
Prevention of Anaphylactic Reactions

- Avoiding contact is best method

- **Desensitization**: series of gradually increasing dosage of allergen → IgG vs IgE

- IgG acts as neutralizing antibodies

- Skin tests used to diagnose sensitivities

- Scrape small amounts of allergen beneath skin

- A “wheal” → positive test
Type II (Cytotoxic) Reactions

- Involve activation of complement by IgG or IgM
 - Antigen is foreign cell, or antigen bound to host cell
- Activation of complement lyses cells
- Most common involves blood group system
 - ABO, Rh blood group systems
- Another type is drug-induced cytotoxic reactions
ABO Blood Group System

- A person’s ABO blood type depends on RBC antigens
 - “A” or “B” antigens

<table>
<thead>
<tr>
<th>Illustration</th>
<th>Plasma Antibodies</th>
<th>Blood That Can Be Received</th>
<th>What If</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Neither anti-A nor anti-B antibodies</td>
<td>A, B, AB, O (Universal recipient)</td>
<td>3%</td>
</tr>
<tr>
<td>B</td>
<td>Anti-A</td>
<td>B, O</td>
<td>3%</td>
</tr>
<tr>
<td></td>
<td>Anti-B</td>
<td>A, O</td>
<td>41%</td>
</tr>
<tr>
<td></td>
<td>Anti-A and Anti-B</td>
<td>O (Universal donor)</td>
<td>47%</td>
</tr>
</tbody>
</table>
ABO Blood Group System

- A person has antibodies against other blood antigens
 - Recognized as “non-self”

<table>
<thead>
<tr>
<th>Illustration</th>
<th>Plasma Antibodies</th>
<th>Blood That Can Be Received</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Neither anti-A nor anti-B antibodies</td>
<td>A, B, AB, O (Universal recipient)</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>Anti-A</td>
<td>B, O</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Anti-B</td>
<td>A, O</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Anti-A and Anti-B</td>
<td>O (Universal donor)</td>
<td>47</td>
</tr>
</tbody>
</table>

Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings.
ABO Blood Group System

- When blood transfusion is incompatible, antigen-antibody complex activates complement → cells lyse
 - When Type A blood is transfused into person with Type B blood
 - Presence of anti-A antibodies react with A antigens on incoming Type A blood
Rh Blood Group System

- Another blood antigen is Rh factor
- Those that have Rh factor are called Rh\(^+\), vs Rh\(^-\)
- Rh\(^-\) individuals do not have antibodies to Rh factor
- Exposure to Rh\(^+\) blood can sensitize individuals
 - Produce anti-Rh antibodies
- Second exposure to Rh\(^+\) blood causes reaction with Rh factor
 - Serious hemolytic reaction develops
Drug-induced Cytotoxic Reactions

- Cytotoxic reactions caused by drugs
- Drugs bound to blood cells cause complement induced lysis
- Thrombocytopenic purpura: drug coats platelets → destroyed
 - Loss results in purple spots
- Hemolytic anemia: drug coats RBC
- Agranulocytosis: drug coats WBC
Type III (Immune Complex) Reactions

- Involve antibodies against soluble antigens
- **Immune complex**: complex of antigen and antibodies
 - Form only under certain conditions
- Can activate complement, cause inflammatory damage

Immune complex becomes trapped against tissue membranes → inflammation damages tissue

Glomerulonephritis: inflammatory damage of kidneys due to infection
Type IV (Delayed Cell-Mediated) Reactions

- Type IV is cell-mediated, mainly T cells
- After sensitization, reaction is unapparent for days
 - Time required for T cells to accumulate
- Common mechanism involved in tissue transplant rejection
 - Mediated by CTLs
Type IV (Delayed Cell-Mediated) Reactions

- Sensitization occurs when foreign antigens are phagocytized, presented to T cells
 - T cells mature into memory cells
- Re-exposure results in “delayed hypersensitivity reactions”
 - Memory T cells activate CTLs \rightarrow destroy antigens
- TB skin test is delayed hypersensitivity
 - *M. tuberculosis* in macrophage sensitizes individual
 - Injection of antigen results in delayed reaction
Type IV (Delayed Cell-Mediated) Reactions

Allergic Contact Dermatitis
Caused by small molecules that combine with skin proteins

Poison Ivy

Pentadecachol molecules + Skin protein

Dermatitis on arm

Primary Contact

Secondary Contact

7-10 days

T cells: Sensitization step

T memory cells: Immune response

Many active T cells: Disease

7-10 days

(No dermatitis)

1-2 days

Dermatitis
Reactions to Transplantation

- Foreign tissue transplants are "rejected"
 - Attack by T cells, macrophages, antibodies

- **Immunosuppression**: suppression of immune system
 - Often to prevent rejection of transplant

- Favorable to suppress cell-mediated immunity
 - If humoral immunity not suppressed, can still resist many microbes

- **Cyclosporine**: drug that suppresses activation of CTLs
 - No effect on humoral immunity
Autoimmune Diseases

- **Autoimmune disease**: immune system responds against “self” antigens
 - Cause damage to own tissues, organs
- Occur when there is a loss of self-tolerance
 - Immune’s ability to discriminate self from non-self
Cell-mediated Autoimmune Diseases

- Attack of own tissues by T cells and macrophages
- **Multiple sclerosis**: autoimmune attack of motor nerve cells
 - Progressive loss of muscle function
- **Insulin-dependent diabetes mellitus**: destruction of insulin-secreting cells in pancreas
The Immune System and Cancer

- **Immune surveillance**: cancer cells develop frequently, but are removed by immune system
- Surface of tumor cells develop “tumor-associated antigens” → recognized as non-self
 - Can be destroyed by CTLs, NK cells, macrophages
- Tumors can evade immune system if:
 - Tumor antigen fails to stimulate immune system
 - Tumor cells grow too rapidly
 - Tumor cells grow in tissue and move to bloodstream
Immunotherapy for Cancer

- Use of immune system to prevent or cure cancer
 - Stimulate immune response against tumor cells
- Attractive therapeutic → avoids damage to healthy cells
Immunotherapy for Cancer

- One approach is to mix dendritic cells with genetic material from a tumor
 - Dendritic cells are APC that activate CTLs
- Another is the use of immunotoxins: combo of toxin and antibody
 - Could be used to specifically kill tumor cells
 - Requires that antibodies can reach tumor cells – difficult with large tumor masses
Cancer Vaccines

Therapeutic vaccine: used to treat existing cancer
- Therapeutic vaccine follow two approaches
- Whole-cell vaccines – prepared from cancer cells
- Antigen-type vaccines – antigens found on cancer cells

Prophylactic vaccines: used to prevent development of cancer
- Hepatitis B (liver), HPV (cervical) are viruses that can cause cancer
- Vaccine against virus is indirect prophylactic vaccine
Immunodeficiencies

- Absence of a sufficient immune response
- Can be either congenital or acquired
Congenital Immunodeficiencies

- Determined by inherited genes
- DiGeorge’s syndrome: lack of thymus gland
- Agammaglobulinanemia: growth of B cells is blocked
Acquired Immunodeficiencies

- Acquired via cancers, drugs, infectious agents
- Many viruses can infect and kill lymphocytes
 - HIV infects Helper T cells