

"All we have to do is place them on the waiting room chairs!"

Module 12

Applications/Disorders of the Immune System

© 2013 Pearson Education, Inc.

TORTORA FUNKE CASE

microbiology

AN INTRODUCTION

ELEVENTH EDITION

© 2013 Pearson Education, Inc.

Chapter 18

Practical Applications of Immunology

Lectures prepared by Helmut Kae

ALWAYS LEARNING

Active vs Passive Vaccination

- Active vaccination: introduction of antigen to stimulate immune response
 - Long lasting protection
- Passive vaccination: introduction of protective or neutralizing antibodies
 - Short term protection

Vaccines

- Vaccine: suspension of organisms or fractions of organisms that induce immunity
 - Early 1700's, exposed smallpox scabs to veins
 - Edward Jenner developed smallpox vaccine in 1798
- Development of vaccines most important application of microbiology
 - Jenner's work won him Nobel Prize

Chapter 18, page 510, Reported numbers of measles cases in the United States, 1960–2010. (CDC, 2010)

Figure B

Principles and Effects of Vaccination

- Main purpose of active vaccination → stimulate memory cell production
 - "Vaccine" for small pox was infection with cowpox
 - Closely related to smallpox, milder symptoms
 - Stimulates memory cells against cow and smallpox
- Herd immunity works by immunizing most of a population
 - Protects susceptible people by limiting spread
- Several types of vaccines exist

Attenuated Whole-Agent Vaccines

- Living but attenuated (weak) microbes
- Live vaccine, mimics infection more effectively
- Can achieve lifelong immunity, especially against virus
- Attenuated microbe derived in lab from many mutations
- But, possibility of "back mutation" to virulent strain
 - Not used on people with weak immune systems

Attenuated Whole-Agent Vaccines

Inactivated Whole-Agent Vaccines

- Microbes that have been killed
- Usually killed by chemicals, formalin or phenol
- Often used in immune compromised people

Inactivated viruses

gH-detective HSV-2 vaccine

Toxoids

- Inactivated toxins
- Directed at toxins produced by pathogen
- Require occasional **boosters**: periodic shots given to maintain effectiveness of vaccine

Subunit Vaccines

- Use only antigenic fragments of microbes
- Aka acellular or recombinant vaccines
- Choose antigen that best stimulates immune response
- Safer cannot reproduce, fewer adverse effects

Viral Pathogen

Subunit Vaccine

© 2013 Pearson Education, Inc.

Conjugated Vaccine

- Antigen attached to polysaccharide
- Polysaccharides help increase immune response

Nucleic Acid Vaccines

- DNA vaccines
- Newest, most promising
- No commercial vaccines yet
- Injection of "naked" DNA, often as plasmid, into muscle
 - Results in production of protein that stimulate immune response
- DNA can be easily degraded, so it may not have long lasting effectiveness

Nucleic Acid Vaccines

The Development of New Vaccines

- Vaccine development decreased until recently
- Introduction of viral culture techniques has allowed growth of viral vaccines
- The ideal vaccine would include
 - Eating instead of injection
 - Lifelong immunity from one dose
 - Stable without refrigeration
 - Affordable

The Development of New Vaccines

- New vaccines for drug addictions, Alzheimer's disease, cancer
- Currently, 20 injections required for children
 - Additional combination vaccines would be beneficial
 - Routes other than injection
 - Intranasal spray, skin patches

Safety of Vaccines

- No vaccination is 100% safe
- Some risk involved in receiving vaccines
 - Sometimes they cause disease
 - Rota virus causes infant diarrhea
 - In some, vaccine caused intestinal blockage
- Some tried to link MMR to autism
 - Links unsubstantiated
- Overall, very low risk is worth the great gain of immunity

TORTORA FUNKE CASE

microbiology

AN INTRODUCTION

ELEVENTH EDITIOI

© 2013 Pearson Education, Inc.

Chapter 19

Disorders of the Immune System

Lectures prepared by Helmut Kae

ALWAYS LEARNING

Hypersensitivity

- Abnormal antigen induced response
 - An undesired reaction of the immune system
 - Aka allergies
 - Antigen is called allergen

Hypersensitivity

- Occurs when individual is sensitized by initial exposure to allergens
 - Generates memory cells against allergen
 - 2nd exposure stimulates immune response
- Reactions fall into 4 categories
 - Type I, II, III, IV

Type I (Anaphylactic) Reactions

- Anaphylaxis: "the opposite of protected"
- Occurs when allergens combine with IgE antibodies
 - IgE+allergen binds to mast cells, basophils
 - Binding triggers release of histamine

Histamine triggers inflammation

Other effects are mucus secretions in nose, difficulties breathing

Systemic anaphylaxis

- Aka anaphylactic shock
- Results upon second exposure to *injected* allergens
- Blood vessels enlargen → ↓ blood pressure → shock
- Reactions can be fatal in minutes
- Treated with epinephrine injection → constricts blood vessels
- Allergens include penicillin, insect stings, jellyfish stings

Localized Anaphylaxis

- Associated with inhaled or ingested allergens
- Inhaled allergens sensitize mast cells in resp. tract
 - Re-exposure \rightarrow congested nasal passage, sneezing
 - Antihistamines neutralize effects of histamine

Localized Anaphylaxis

- Ingested allergens into GI tract can sensitize individual
- Result in GI upset, hives
- May result in systemic anaphylaxis if serious
- Most common food allergens are eggs, peanuts, tree-grown nuts, milk, soy, seafood, wheat, and peas

Prevention of Anaphylactic Reactions

- Avoiding contact is best method
- Desensitization: series of gradually increasing dosage of allergen → IgG vs IgE
- IgG acts as neutralizing antibodies

- Skin tests used to diagnose sensitivities
- Scrape small amounts of allergen beneath skin
- A "wheal" \rightarrow positive test

Type II (Cytotoxic) Reactions

- Involve activation of complement by IgG or IgM
 - Antigen is foreign cell, or antigen bound to host cell
- Activation of complement lyses cells
- Most common involves blood group system
 - ABO, Rh blood group systems
- Another type is drug-induced cytotoxic reactions

ABO Blood Group System

- A person's ABO blood type depends on RBC antigens
 - "A" or "B" antigens

ABO Blood Group System				
			Frec	
Illustration	Plasma Antibodies	Blood That Can Be Received	Wh	
A B	Neither anti-A nor anti-B antibodies	A, B, AB, O (Universal recipient)	3	
	Anti-A	В, О	ς	
Ó	Anti-B	Α, Ο	41	
	Anti-A and Anti-B	O (Universal donor)	47	

Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings.

ABO Blood Group System

- A person has antibodies against other blood antigens
 - Recognized as "non-self"

ABO Blood Group System				
			Frec	
Illustration	Plasma Antibodies	Blood That Can Be Received	Wh	
A B	Neither anti-A nor anti-B antibodies	A, B, AB, O (Universal recipient)	3	
	Anti-A	В, О	ς	
Ó	Anti-B	Α, Ο	41	
	Anti-A and Anti-B	O (Universal donor)	47	

 $Copyright @ 2007 \ Pearson \ Education, \ Inc., \ publishing \ as \ Benjamin \ Cummings.$

ABO Blood Group System

- When blood transfusion is incompatible, antigenantibody complex activates complement → cells lyse
 - When Type A blood is transfused into person with Type B blood
 - Presence of anti-A antibodies react with A antigens on incoming Type A blood

Rh Blood Group System

- Another blood antigen is Rh factor
- Those that have Rh factor are called Rh⁺, vs Rh⁻
- Rh⁻ individuals do not have antibodies to Rh factor
- Exposure to Rh⁺ blood can sensitize individuals
 - Produce anti-Rh antibodies
- Second exposure to Rh⁺ blood causes reaction with Rh factor
 - Serious hemolytic reaction develops

Drug-induced Cytotoxic Reactions

- Cytotoxic reactions caused by drugs
- Drugs bound to blood cells cause complement induced lysis
- Thrombocytopenic purpura: drug coats platelets → destroyed
 - Loss results in purple spots
- Hemolytic anemia: drug coats RBC
- Agranulocytosis: drug coats WBC

Copyright © 2007 Pearson Education, Inc., publi

Type III (Immune Complex) Reactions

- Involve antibodies against soluble antigens
- Immune complex: complex of antigen and antibodies
 - Form only under certain conditions
- Can activate complement, cause inflammatory damage Immune complement

Immune complex becomes trapped against tissue membranes → inflammation damages tissue

Glomerulonephritis: inflammatory damage of kidneys due to infection

^{© 2013} Pearson Education, Inc.

Type IV (Delayed Cell-Mediated) Reactions

- Type IV is cell-mediated, mainly T cells
- After sensitization, reaction is unapparent for days
 - Time required for T cells to accumulate
- Common mechanism involved in tissue transplant rejection
 - Mediated by CTLs

Type IV (Delayed Cell-Mediated) Reactions

- Sensitization occurs when foreign antigens are phagocytized, presented to T cells
 - T cells mature into memory cells
- Re-exposure results in "delayed hypersensitivity reactions"
 - Memory T cells activate CTLs \rightarrow destroy antigens
- TB skin test is delayed hypersensitivity
 - *M. tuberculosis* in macrophage sensitizes individual
 - Injection of antigen results in delayed reaction

Type IV (Delayed Cell-Mediated) Reactions

Allergic Contact Dermatitis Caused by small molecules that combine with skin proteins

Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings.

Reactions to Transplantation

- Foreign tissue transplants are "rejected"
 - Attack by T cells, macrophages, antibodies
- Immunosuppression: suppression of immune system
 - Often to prevent rejection of transplant
- Favorable to suppress cell-mediated immunity
 - If humoral immunity not suppressed, can still resist many microbes
- Cyclosporine: drug that suppresses activation of CTLs
 - No effect on humoral immunity

Autoimmune Diseases

- Autoimmune disease: immune system responds against "self" antigens
 - Cause damage to own tissues, organs
- Occur when there is a loss of self-tolerance
 - Immune's ability to discriminate self from non-self

Cell-mediated Autoimmune Diseases

- Attack of own tissues by T cells and macrophages
- Multiple sclerosis: autoimmune attack of motor nerve cells
 - Progressive loss of muscle function
- Insulin-dependent diabetes mellitus: destruction of insulin-secreting cells in pancreas

The Immune System and Cancer

- Immune surveillance: cancer cells develop frequently, but are removed by immune system
- Surface of tumor cells develop "tumor-associated antigens" → recognized as non-self
 - Can be destroyed by CTLs, NK cells, macrophages
- Tumors can evade immune system if:
 - Tumor antigen fails to stimulate immune system
 - Tumor cells grow too rapidly
 - Tumor cells grow in tissue and move to bloodstream

Immunotherapy for Cancer

- Use of immune system to prevent or cure cancer
 - Stimulate immune response against tumor cells
- Attractive therapeutic → avoids damage to healthy cells

© 2013 Pearson Education, Inc.

Immunotherapy for Cancer

- One approach is to mix dendritic cells with genetic material from a tumor
 - Dendritic cells are APC that activate CTLs
- Another is the use of immunotoxins: combo of toxin and antibody
 - Could be used to specifically kill tumor cells
 - Requires that antibodies can reach tumor cells difficult with large tumor masses

Cancer Vaccines

Therapeutic vaccine: used to treat existing cancer

- Therapeutic vaccine follow two approaches
- Whole-cell vaccines prepared from cancer cells
- Antigen-type vaccines antigens found on cancer cells
- **Prophylactic vaccines**: used to prevent development of cancer
- Hepatitis B (liver), HPV (cervical) are viruses that can cause cancer
- Vaccine against virus is indirect prophylactic vaccine

Immunodeficiencies

- Absence of a sufficient immune response
- Can be either congenital or acquired

Congenital Immunodeficiencies

- Determined by inherited genes
- DiGeorge's syndrome: lack of thymus gland
- Agammaglobulinanemia: growth of B cells is blocked

Acquired Immunodeficiencies

- Acquired via cancers, drugs, infectious agents
- Many viruses can infect and kill lymphocytes
 - HIV infects Helper T cells