

Module 3

Microbial Metabolism

© 2013 Pearson Education, Inc.

TORTORA FUNKE CASE

microbiology

AN INTRODUCTION

ELEVENTH EDITIO

© 2013 Pearson Education, Inc.

Chapter 5

Microbial Metabolism

Lectures prepared by Helmut Kae

ALWAYS LEARNING

Catabolic and Anabolic Reactions

- Metabolism: the sum of the chemical reactions in an organism
- Two general types of metabolic reactions
 - Catabolism: provides energy and building blocks for anabolism
 - Anabolism: uses energy and building blocks to build large molecules
- Recall from Chapter 2
 - Energy can be stored when covalent bonds form
 - Energy can be released when covalent bonds broken

Catabolic Reactions

- Breakdown of complex substances to small molecules
 - Degradative reactions
 - Breaking of covalent bonds
 - What type of reaction used to break covalent bonds?
- Purpose is to generate energy, make building blocks
 - Releases energy stored in bonds
 - Breakdown products used to build new molecules
- Eg, breakdown of glucose for energy

Anabolic Reactions

- Building macromolecules from small molecules
 - Biosynthetic reactions
 - Forming of covalent bonds
 - What type of reaction used to form covalent bonds?
- Requires energy to form bonds
- Purpose is to generate materials for cell growth
- Eg, making proteins from amino acids

Figure 5.1 The role of ATP in coupling anabolic and catabolic reactions.

Catabolic and Anabolic Reactions

- A metabolic pathway is a sequence of chemical reactions in a cell
- Metabolic pathways are controlled by enzymes

Enzymes

- Enzymes are biological catalysts
 - "Allow" reactions to occur
 - Not used up in that reaction
- Specific for a single chemical reaction
- Specificity is due to structure of enzyme
 - Proteins (enzymes) have characteristic 3D structure
 - Structure is essential for function
- If enzyme loses shape, enzyme doesn't work
 - Denaturation (Denatured)

Enzymes

- Enzymes act on one or more "substrates"
 - Substrates bind at active site
- Each enzyme is specific:
 - For one (set of) substrate(s)
 - For one reaction
- Names of enzymes end in "-ase"
 - Sucrase, Catalase, DNA polymerase
- Eg, the enzyme sucrase catalyses the hydrolysis of sucrose into glucose and fructose
 - That's it, no other reactions

Enzyme Components

- Many enzymes are made entirely of proteins
- Some consist of 2 components:
 - Apoenzyme: protein
 - Cofactor: nonprotein component
 - Coenzyme: organic cofactor
- Holoenzyme: apoenzyme plus cofactor
 - Apoenzyme alone doesn't function

Enzyme Components

Enzyme Mechanism

- General sequence of events in an enzymatic reaction
 - Substrate(s) bind to active site
 - Enzyme-substrate complex
 - The substrate(s) is transformed
 - Transformed molecule(s), product(s), released
 - No longer fits active site
 - Enzyme only binds to substrate
 - Enzyme is free to bind to new substrate(s)
- Sequence continues until enzyme is shut off, or enzyme breaks down

Enzyme Mechanism

- Temperature
- pH
- Inhibitors

- Enzymes require specific conditions to function
- Hostile environments can cause proteins to denature

Active (functional) protein

Denatured protein

Temperature

- In general, chemical reactions speed up as temperature increases slightly
- For enzymes, too high temperature increases cause denaturation

Figure 5.5a Factors that influence enzymatic activity, plotted for a hypothetical enzyme.

(a) I emperature. The enzymatic activity (rate of reaction catalyzed by the enzyme) increases with increasing temperature until the enzyme, a protein, is denatured by heat and inactivated. At this point, the reaction rate falls steeply.

- pH
 - pH is a measure of hydrogen ions (H⁺) in a solution
 - All enzymes have preferred pH
 - Shift from preferred pH will denature enzymes

Figure 5.5b Factors that influence enzymatic activity, plotted for a hypothetical enzyme.

(b) pH. The enzyme illustrated is most active at about pH 5.0.

- Certain chemicals that bind to enzymes
 - Binding disrupts enzyme function
- Function as enzyme inhibitors
- Two classes of inhibitors
 - Competitive inhibitors
 - Noncompetitive inhibitors

Competitive Inhibitors

- Bind at active site
- *Compete* with substrate for the active site of enzyme

The Sulfa Drugs

- Sulfa drugs inhibit Tryptophan (an essential amino acid) synthesis via competitive inhibition
- Sulfa drugs were the first effective antibacterial drugs

Noncompetitive Inhibition

- Bind away from active site
- Aka allosteric inhibition

Noncompetitive Inhibition

 Nevirapine (NNRTI) prevents replication of HIV via non-competitive inhibition

© 2013 Pearson Education, Inc.

Enzyme Inhibitors: Feedback Inhibition

- Control of enzymatic activity by use of allosteric inhibition
 - Mechanism to stop cell from wasting chemical resources

Energy Production

Learning Objectives

- 5-8 Explain the term *oxidation-reduction*.
- 5-9 List and provide examples of three types of phosphorylation reactions that generate ATP.
- 5-10 Explain the overall function of metabolic pathways.

Energy Production

- Energy is stored in covalent bonds
 - Recall: covalent bonds form by sharing electrons
- Energy is stored in electrons of covalent bonds
- Catabolism involves stripping "high energy" electrons from molecules and concentrate them in the bonds of ATP
- Reactions that involve removing and adding electrons are called "oxidation-reduction" reactions

Oxidation-Reduction Reactions

- Oxidation: removal of electrons
- **Reduction**: gain of electrons
- Redox reaction: an oxidation reaction paired with a reduction reaction
- Catabolism is the oxidation of highly reduced molecules

A Redox Reduction

© 2013 Pearson Education, Inc.

Biological Oxidation

The Generation of ATP

- Energy released by redox reactions "trapped" by ATP
- ATP is generated by the phosphorylation of ADP
 - Addition of a phosphate
 - Requires energy

Generation of ATP

- 3 Types of phosphorylations to generate ATP
 - Substrate-level phosphorylation
 - Oxidative phosphorylation
 - Photophosphorylation

Substrate-Level Phosphorylation

- Direct transfer of a PO₄⁻ to ADP generates ATP
- Enzymatic process
- Quick and easy
- Not highly efficient

 $C-C-C \sim P + ADP \rightarrow C-C-C + ATP$

Oxidative Phosphorylation

- "High energy" electrons from organic molecule (food) used to generate a chemiosmotic (proton) gradient
 - Gradient used to drive ATP production

Photophosphorylation

- Occurs only in photosynthetic cells
- Light transfers energy to "low-energy" electrons
 - Electrons get "excited"
- Excited electrons used to generate chemiosmotic gradient, drive ATP production
 - Similar to oxidative phosphorylation, using light instead of food to "build dam"

Metabolic Pathways of Energy Production

- Catabolism involves series of controlled reactions
 - Releasing energy in one reaction generates too much heat, can't be harnessed efficiently
- Catabolism is a series of redox reactions
 - Electrons extracted to generate ATP
 - Sequence of reactions called a pathway
- Every reaction in a pathway performed by one enzyme
Carbohydrate Catabolism

- Carbohydrates are primary source of energy
 - Glucose is most common energy source
- Glucose is broken down via two general processes
 - Cellular respiration
 - Glucose + $O_2 \rightarrow CO_2$ + H_2O + energy
 - Fermentation
 - Glucose → Energy + Organic end-product, i.e. ethanol, lactic acid

Figure 5.11 An Overview of Respiration and Fermentation.

Cellular Respiration

- **Complete** oxidation (catabolism) of glucose
 - Waste products are inorganic
- Most of the energy is produced via oxidative phosphorylation
- Two types of respiration
 - Aerobic Respiration with oxygen
 - Anaerobic Respiration without oxygen
- Multiple pathways involved
 - Glycolysis
 - Krebs Cycle
 - Electron transport Chain

Glycolysis

- The oxidation of glucose (6 Carbon) to 2 pyruvic acid (3 Carbon)
- Main end products
 - 2 pyruvic acids (aka pyruvate)
 - 2 NADH an electron carrier
 - 2 ATP via SLP

A Word About Electron Carriers

- NAD+ (empty electron carrier) removes electrons from organic molecule (food → glucose)
 - Becomes NADH (full electron carrier)
- NADH takes electrons to their final destination
 - Stay tuned

Glycolysis

© 2013 Pearson Education, Inc.

Alternatives to Glycolysis

Pentose phosphate pathway

- Uses pentoses and NADPH (electron carrier for anabolism)
- Operates with glycolysis

Entner-Doudoroff pathway

- Produces NADPH and ATP
- Does not involve glycolysis

Figure 5.11 An Overview of Respiration and Fermentation.

Intermediate Step

- Pyruvic acid (from glycolysis) is oxidized and decarboxylated
- NADH is produced

The Krebs Cycle

- Aka tricarboxylic acid cycle (TCA); citric acid cycle
- Series of 8 reactions
- Completely catabolizes organic molecule to CO₂
 - Released as waste
- Main products are NADH, FADH₂, 1 ATP
 - Electron carriers
- Final organic end-product is same as starting reactant
 - A "cycle"

The Krebs Cycle

Figure 5.11 An Overview of Respiration and Fermentation.

The Electron Transport Chain

- A series of electron carrier enzymes in membrane
- NADH, FADH₂ pass electrons to ETC
 - Become NAD+, FAD
 - Return to glycolysis, Krebs cycle
- Energy released from electrons used to drive H⁺ from inside cell to outside cell
 - Produces H⁺ concentration gradient chemiosmotic gradient
- Electrons end up on "final electron carrier" waste

© 2013 Pearson Education, Inc.

Oxidative Phosphorylation

- ETC generates chemiosmotic gradient
- H⁺ gradient favors diffusion into cell
 - H⁺ cannot diffuse across membrane freely Why?
- H⁺ re-enters cell via facilitated diffusion
 - Through transporter called ATP synthase
- ATP synthase captures energy in gradient
 - Similar to water driving dam turbine
 - Produces ATP → Oxidative phosphorylation

Figure 5.11 An Overview of Respiration and Fermentation.

A Summary of Respiration

- Aerobic respiration: the final electron acceptor in the electron transport chain is molecular oxygen (O₂)
 - Organism is an aerobe
 - Oxygen is converted to water → waste
- Anaerobic respiration: the final electron acceptor in the electron transport chain is NOT O₂
 - Usually inorganic ion
 - Organism is an anaerobe
 - Yields less energy than aerobic respiration because only part of the Krebs cycle operates under anaerobic conditions

Anaerobic Respiration

Electron Acceptor	Products
NO ₃ -	$NO_2^{-}, N_2^{+} H_2^{-}O$
SO ₄ -	$H_2S + H_2O$
CO ₃ ² -	$CH_4 + H_2O$

Carbohydrate Catabolism

 ATP produced from complete oxidation of one glucose using aerobic respiration

Pathway	By Substrate-Level	By Oxidative Phosphorylation		
	Phosphorylation	From NADH	From FADH	
Glycolysis	2	6	0	
Intermediate step	0	6	0	
Krebs cycle	2	18	4	
Total	4	30	4	

Cellular Respiration

- Other energy sources can be used
 - Eg, can oxidize lipids, proteins
- Polymers broken down by enzymes
- Smaller subunits enter catabolism at various points of glycolysis, Krebs cycle

Fermentation

- Any spoilage of food by microorganisms (general use)
- Any process that produces alcoholic beverages or acidic dairy products (general use)
- Any large-scale microbial process occurring with or without air (common definition used in industry)

Fermentation

- Scientific definition:
 - Releases energy from oxidation of organic molecules (food)
 - Does not require oxygen
 - Does not use the Krebs cycle or ETC
 - Uses an organic molecule as the final electron acceptor

Fermentation

- ATP generated only via glycolysis
- Pyruvic acid converted into organic molecule endproduct → waste
 - Main purpose is to regenerate NAD+ (from NADH) for glycolysis
 - NAD+, can participate in glycolysis again
- Produces only small amount of energy energy still left in end-product

Figure 5.18a Fermentation.

TABLE 5.4 Some Industrial Uses for Different Types of Fermentations*

Fermentation End-Product(s)	Industrial or Commercial Use	Starting Material	Microorganism		
Ethanol	Beer, wine	Starch, sugar	Saccharomyces cerevisiae (yeast, a fungus)		
	Fuel	Agricultural wastes	Saccharomyces cerevisiae (yeast)		
Acetic Acid	Vinegar	Ethanol	Acetobacter		
Lactic Acid	Cheese, yogurt	Milk	Lactobacillus, Streptococcus		
	Rye bread	Grain, sugar	Lactobacillus delbrueckii		
	Sauerkraut	Cabbage	Lactobacillus plantarum		
	Summer sausage	Meat	Pediococcus		
Propionic Acid and Carbon Dioxide	Swiss cheese	Lactic acid	Propionibacterium freudenreichii		
Acetone and Butanol	Pharmaceutical, industrial uses	Molasses	Clostridium acetobutylicum		
Citric Acid	Flavoring	Molasses	Aspergillus (fungus)		
Methane	Fuel	Acetic acid	Methanosarcina		
Sorbose	Vitamin C (ascorbic acid)	Sorbitol	Gluconobacter		
*Unless otherwise noted, the microorganisms listed are bacteria.					

Chemotherapy

- Cyanides → highly toxic
 - Inhibit Cytochrome c Oxidase, enzyme in ETC
- Disrupts ETC
 - Cell cannot use oxygen
 - Cell cannot produce ATP
 - Cell dies
- Strict fermenters not affected by cyanide

Catabolism and You

- Muscle cells have huge ATP demand
 - Only enough for about 3 seconds of activity
- 3 ways muscles create ATP
 - Phosphagen system
 - Glycogen-lactic acid system
 - Aerobic respiration

Phosphagen System

Creatine phosphate

- Phosphate containing molecule
- Creatine kinase can transfer P from Creatine phosphate to ADP → ATP
 - Substrate level phosphorylation
- Fast and easy
- Not efficient
 - About 10 seconds worth
- Useful for sprinters or low repetition/high weight exercise

Glycogen-Lactic Acid System

- Glycogen
 - Glucose polymer \rightarrow stored in muscle cells
- When necessary, cell hydrolyses glycogen
 - Produces ATP via lactic acid fermentation
- Slower than phosphagen system, but produces more ATP
 - Produces enough ATP for about 90 sec
- Lactic acid build-up causes muscles to burn
 - Have to switch off eventually
- Useful for swimmers, medium distance sprints

Aerobic respiration

- Muscles can use oxygen to burn glucose from:
 - Remaining glycogen in muscles
 - Glucose present in bloodstream
 - Fatty acid reserves
 - Proteins (only in extreme conditions, like starvation)
- Much slower than phosphagen and Glycogen systems
 - But can supply ATP for hours as long as there is glucose and oxygen
- Marathon, endurance activities

Photosynthesis

- Photo: conversion of light energy into chemical energy (ATP)
 - Light-dependent (light) reactions
- Synthesis:
 - **Carbon fixation**: fixing carbon into organic molecules
 - Light-independent (dark) reaction: Calvin-Benson cycle

Light-dependent (Light) Reactions

- Light energy is absorbed by chlorophyll
 - In thylakoids of chloroplasts in eukaryotes
 - In thylakoids of prokaryotes
- Light energizes or "excites" electrons in chlorophyll
- Excited electrons are passed on to ETC
 - ATP is generated
- Occurs in two ways:
 - Cyclic (anoxygenic)
 - Noncyclic (oxygenic)

Light-independent (Dark) Reactions

- Aka Calvin-Benson Cycle
- Uses ATP, NADPH produced by noncyclic photophosphorylation to "fix" CO₂
Figure 5.26 A simplified version of the Calvin-Benson cycle.

Metabolic Diversity Among Organisms

- Organisms classified according to metabolism
 - Based upon "nutritional pattern"
- Specifically, look at basic requirements to sustain life
 - Source of energy
 - Source of carbon

Metabolic Diversity Among Organisms

- Two classifications based on energy sources
 - Phototrophs use light as primary source of energy
 - Chemotrophs use inorganic and organic molecules (chemicals) for energy
- Two classifications based on carbon sources
 - Autotrophs use carbon dioxide (inorganic)
 - Aka "lithotrophs" (litho = rock)
 - Heterotrophs use organic carbon source
 - Aka organotroph

Metabolic Diversity Among Organisms

Nutritional Type	Energy Source	Carbon Source
Photoautotroph		
Photoheterotroph		
Chemoautotroph		
Chemoheterotroph		

Chemoheterotrophs

- Heterotrophs classified according to their source of organic molecule
 - Saprophytes live on dead organic matter
 - Parasites get nutrients from living hosts
- Metabolic diversity of great interest
 - Can cause problems, provide potential solutions
 - *Rhodococcus erythropolis* can cause disease in humans, animals
 - -BUT, can remove sulfur from petroleum