

Module 4

Microbial Growth

TORTORA FUNKE CASE

microbiology

AN INTRODUCTION

IOITIDE HTNEVELE

© 2013 Pearson Education, Inc.

Chapter 6

Microbial Growth

Lectures prepared by Helmut Kae

ALWAYS LEARNING

Microbial Growth

- Microbial growth is the increase in cell number, not cell size
 - Growing microbes means an increase in population size
- Important to understand conditions necessary for microbial growth
 - Limit growth of microbes that cause disease, food spoilage
 - Encourage growth of beneficial microbes

The Requirements for Growth

- Physical requirements
 - Temperature
 - pH
 - Osmotic pressure
- Chemical requirements
 - Carbon
 - Nitrogen, sulfur, and phosphorous
 - Trace elements
 - Oxygen
 - Organic growth factor

Temperature

- Microbes grow within limited temperature range
 - Low, high temp affect enzyme function, cell structure
- Minimum growth temperature lowest temp at which a species will grow
- Optimum growth temperature temp at which microbe grows best
- Maximum growth temperature highest temp at which growth is possible

Microbes divided into 5 categories according to temperature range

^{© 2013} Pearson Education, Inc.

Temperature

Psychrophiles

- Can grow below 0°C; optimum at 11°C
- Usually killed by temp above 20°C
 - Therefore, rarely problem with food spoilage

Psychrotrophs

- Can grow at 0°C; optimum around 20°C
- Cause problems with food spoilage, can grow in fridge
 - But grow slow → proper refrigeration helps prevent food spoilage

Temperature

Mesophiles

- Many human pathogens grow best at 37°C
 - Human body temp
- Mesophiles include most common pathogens, food spoilage microbes

Thermophiles, hyperthermophiles

- Grow in hot water tank, volcanic hot springs
- Cannot grow below 45°C usually not health problem

рΗ

- PH refers to concentration of H+ ions
 - Low pH \rightarrow high H+ \rightarrow acid
 - High pH \rightarrow low H+ \rightarrow alkaline
 - Most bacteria grow near neutral pH, pH 7
- Acidophiles grow in acidic environments
 - Sauerkraut, yogurt products of acidophiles
 - Preserved from spoilage by bacterial fermentation
- Molds and yeasts can grow between pH 5 and 6

Figure 5.5a Factors that influence enzymatic activity, plotted for a hypothetical enzyme.

(a) I emperature. The enzymatic activity (rate of reaction catalyzed by the enzyme) increases with increasing temperature until the enzyme, a protein, is denatured by heat and inactivated. At this point, the reaction rate falls steeply.

Figure 5.5b Factors that influence enzymatic activity, plotted for a hypothetical enzyme.

(b) pH. The enzyme illustrated is most active at about pH 5.0.

Osmotic Pressure

- Microbes dependent on water to carry nutrients
 - Microbes live in aqueous (water) environments
- Hypertonic environments causes water to leave cell
 - Growth inhibited due to plasmolysis
- Food preserved by high osmotic pressure add solutes
- Halophiles tolerate high osmotic pressure
- Extreme halophiles require high salt conditions
 - Live in the Dead Sea, salt lakes

- Carbon
 - Structural organic molecules, energy source
 - Chemoheterotrophs use organic carbon sources
 - Autotrophs use CO₂

- Nitrogen
 - In amino acids, proteins, nucleic acids
 - Most bacteria decompose proteins
 - Some bacteria use NH₄⁺ or NO₃⁻
 - A few bacteria use nitrogen gas (N2) from atmosphere
 - Called nitrogen fixation

- Sulfur
 - In amino acids, thiamine, and biotin
 - Most bacteria decompose proteins
 - Some bacteria use SO₄^{2–} or H₂S
- Phosphorus
 - In DNA, RNA, ATP, and membranes
 - PO₄^{3–} is a source of phosphorus

- Trace elements
 - Inorganic elements required in small amounts
 - Usually as enzyme cofactors

Organic Growth Factors

- Organic compounds obtained from the environment
- Vitamins, amino acids, purines, and pyrimidines

- Aerobic metabolism provides more energy than anaerobic metabolism
- BUT, Oxygen is toxic in high amounts to ALL organisms
 - Toxic forms of oxygen are highly reactive; damage cell components
 - Many metabolic pathways exist to detoxify oxygen

Toxic Oxygen

- Singlet oxygen: ¹O₂⁻ boosted to a higher-energy state
- Superoxide free radicals: O₂[•]

 $O_2^{-} + O_2^{-} + 2 H^+$ Superoxide dismutase $H_2O_2 + O_2$

Peroxide anion: O₂²⁻

$$2 H_2O_2 \xrightarrow{\text{Catalase}} 2 H_2O + O_2$$

 $H_2O_2 + 2 H^+ \longrightarrow 2 H_2O$

Hydroxyl radical (OH•)

Biofilms

- Glycocalyx that holds community of bacteria together
 - Share nutrients
 - Sheltered from harmful factors

Biofilms and Human Health

- Dental plaque is a biofilm created by an extracellular polysaccharide
- Formed by Streptococcus species in mouth
 - Only when sucrose is present
- Plaque allows other microbes to join and survive
 - Form acids that lead to tooth decay, gum disease

Biofilms and Human Health

- Biofilms often form on catheters and other tubing
- Numbers are often too low to detect
 - Biofilm protects bacteria from antimicrobial treatments
- Can grow rapidly once inside body, causing UTIs and other infections

Applications of Microbiology 3.2 *Pseudomonas aeruginosa* biofilm.

Growing Microbes in the Lab

- Culture medium: nutrients prepared for microbial growth
- **Sterile**: no living microbes
- Inoculation: introduction of microbes (the inoculum) into sterile medium
- Culture: microbes growing in/on culture medium

Agar

- Complex polysaccharide
- Used as solidifying agent for culture media in Petri plates, slants, and deeps
- Generally not metabolized by microbes
- Liquefies at 100°C
- Solidifies at ~40°C

Culture Media

- Chemically defined media: exact chemical composition is known
- Complex media: extracts and digests of yeasts, meat, or plants
 - Undefined mixture of nutrients

 Table 6.2 A Chemically Defined Medium for Growing a Typical Chemoheterotroph, Such as Escherichia coli

A Chemically Defined Medium for Growing a Typical Chemoheterotroph, TABLE **6.2** Such as Escherichia coli

Constituent	Amount
Glucose	5.0 g
Ammonium phosphate, monobasic (NH ₄ H ₂ PO ₄)	1.0 g
Sodium chloride (NaCl)	5.0 g
Magnesium sulfate (MgSO ₄ . 7H ₂ O)	0.2 g
Potassium phosphate, dibasic (K ₂ HPO ₄)	1.0 g
Water	1 liter

Table 6.4 Composition of Nutrient Agar, a Complex Medium for the Growth of Heterotrophic Bacteria

Composition of Nutrient Agar, a Complex Medium for the Growth TABLE **6.4** of Heterotrophic Bacteria

Constituent	Amount
Peptone (partially digested protein)	5.0 g
Beefextract	3.0 g
Sodium chloride	8.0 g
Agar	15.0 g
Water	1 liter

© 2013 Pearson Education, Inc.

Biosafety Levels

- BSL-1: no special precautions
- BSL-2: lab coat, gloves, eye protection
- BSL-3: biosafety cabinets to prevent airborne transmission
- BSL-4: sealed, negative pressure
 - Exhaust air is filtered twice

Figure 6.8 Technicians in a biosafety level 4 (BSL-4) laboratory.

Reproduction in Prokaryotes

- Recall, microbial growth is increase in cell number
- Bacteria reproduce by binary fission
 - A single cell splits into two identical cells
- Some microbes reproduce by budding
 - Small growth (bud) gets larger, and finally separates

Figure 6.12a Binary fission in bacteria.

 Cell elongates and DNA is replicated.

Cell wall and plasma membrane begin to constrict.

Cross-wall forms, completely separating the two DNA copies.

Cell wall

(a) A diagram of the sequence of cell division

Autor	S ANDORES OF	Visual Representation of Numbers
1 2 4 8 16 32	2 ⁰ 2 ¹ 2 ² 2 ³ 2 ⁴ 2 ⁵	

(a)

The Growth of Bacterial Cultures

- Generation time, g the time it takes for a cell to divide
 - Essentially, time it takes for population to double
- Varies among species
 - Can be 20 mins, can be 20 days
- Microbes can grow fast in ideal conditions
 - Eg, if g=20 mins, then:
 - -1 cell \rightarrow 1 million+ in 20 generations, ~7hrs
 - -1 cell \rightarrow 1 billion+ in 30 generations, ~10 hrs

The Growth of Bacterial Cultures

- Bacterial growth plotted on logarithmic graph
 - Numbers too high for linear or arithmetic graph
- Logarithmic scale increases in increments of 10
 - 10, 100, 1000, 10000, 100000, etc ...
- Converts rapidly increasing exponential growth from curved line into straight line

Figure 6.14 A growth curve for an exponentially increasing population, plotted logarithmically (dashed line) and arithmetically (solid line).

© 2013 Pearson Education, Inc.

Generations

Phases of Growth

- Bacteria growing in liquid medium have characteristic growth pattern
 - When plotted on logarithmic graph bacterial growth curve
- The lag phase
- The log phase
- The stationary phase
- The death phase

Figure 6.15 Understanding the Bacterial Growth Curve.

Bacterial Growth

- 1. Draw and label the bacterial growth curve
 - List the characteristics at each phase
- 2. If a population of 3000 cells growing in ______ phase has a generation time of 45 minutes, how many cells will there be in 3 hours?
- 3. A population contains 100 cells. 2 hours later there are 1600 cells. What is the generation time?

Which growth curve best represents ...

- 1. a mesophile grown at room temperature?
- 2. a mesophile grown at body temperature?
- 3. a psychrotroph grown at room temperature?
- 4. a psychrophile grown at room temperature?
- 5. an obligate aerobe grown aerobically?
- 6. an obligate aerobe grown anaerobically?
- 7. a facultative anaerobe grown aerobically?
- 8. a facultative anaerobe grown anaerobically?
- 9. an obligate anaerobe grown aerobically?

Measurements of Bacterial Growth

- Bacterial cultures and populations are quantified by two general types of measurements
 - Direct Measurements measure cells or cell growth
 - Indirect Measurements use alternative measures to determine population size

Direct Measurements of Microbial Growth

Standard Plate counts

- Grow microbial sample on agar plate
 - Count resulting colonies
 - 1 colony = 1 cell
- Advantages
 - Only viable (live) cells counted
 - Obtain real cell #
- Disadvantage
 - Takes time for colonies to form
 - Labor intensive

Figure 6.16 Serial dilutions and plate counts.

Calculation: Number of colonies on plate × reciprocal of dilution of sample = number of bacteria/ml (For example, if 54 colonies are on a plate of 1:1000 dilution, then the count is 54 × 1000 = 54,000 bacteria/ml in sample.)

Direct Measurements of Microbial Growth

Filtration

- Liquid sample is passed through filter
 - Microbes retained on filter
- Filter is transferred to nutrient medium
- Useful when quantities of microbes in sample are small
- Often used to detect microbial contamination in food, water

Direct Measurements of Microbial Growth

Most Probable Number

- Multiple tube MPN test
- Dilute sample
 - Count tubes with growth
- Useful when bacteria do not grow on media
- But, numbers are an approximation
 - ~95% accurate

Combination of Positives	MPN Index/ 100 m	95% Confidence Limits	
		Lower	Upper
4-2-0	22	6.8	50
4-2-1	26	9.8	70
4-3-0	27	9.9	70
4-3-1	33	10	70
4-4-0	34	14	100
5-0-0	23	6.8	70
5-0-1	31	10	70
5-0-2	43	14	100
5-1-0	33	10	100
5-1-1	46	14	120
5-1-2	63	22	150
5-2-0	49	15	150
5-2-1	70	22	170
5-2-2	94	34	230
5-3-0	79	22	220
5-3-1	110	34	250
5-3-2	140	52	400

Figure 6.19b The most probable number (MPN) method.

(b) MPN table.

Direct Measurements of Microbial Growth

Direct microscopic count

- Number of microbes counted in microscope
- Instant results, but ...
 - Motile cells difficult to count
 - Dead cells look like live cells
 - Need high cell numbers to count accurately

Figure 6.20 Direct microscopic count of bacteria with a Petroff-Hausser cell counter.

Indirect Measurements of Bacterial Growth

Turbidity

- Cloudiness, or density, of a liquid culture
 - Detected using a spectrophotometer
- Higher cell number = increased cloudiness
- Fast and easy method of obtaining quantity, but ...
 - Do not obtain cell # values are only meaningful when compared to each other
 - Dead cells contribute to turbidity light just like live cells

Figure 6.21 Turbidity estimation of bacterial numbers.

Light source

Indirect Measurements of Bacterial Growth

Metabolic activity

- Assumes higher number of bacteria produces higher amount of metabolic product
 - Eg, measure CO₂ build-up
- Can be useful when cells can't be cultured
- Can be performed "on site" without needing to culture microbes

Indirect Measurements of Bacterial Growth

Dry Weight

- Removal of microbes from growth medium, dried, and weighed
- Useful for filamentous bacteria, molds

Measuring Microbial Growth

Direct Methods

- Plate counts
- Filtration
- MPN
- Direct microscopic count

Indirect Methods

- Turbidity
- Metabolic activity
- Dry weight